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Data types in constructive type theory

Constructive type theory is both a foundational mathematical
system and an expressive programming language.

Data types play an important role from both points of view.

Can we study such data types systematically?

For example, what definitions are semantically meaningful? And
can we prove theorems or provide constructions for whole classes of
data types, rather than one by one?
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Plan

Lecture 1 (now) Introduction to Martin-Löf Type Theory

Lecture 2 (Thursday) Inductive data types

Lecture 3 (Friday) More advanced data types
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Brief and incomplete history leading to type theory

I BHK interpretation: informal explanation of what a
constructive proof is (Heyting 1934, Kolmogorov 1932)

I Curry-Howard correspondence: constructive propositional logic
corresponds precisely to the simply typed lambda
calculus/typed combinatory logic (Curry 1958, Howard 1969)

I Constructive Type Theory extends correspondence to predicate
logic by introducing dependent types (Martin-Löf 1972)

L.E.J. Brouwer Arend Heyting Andrey Kolmogorov Haskell Curry William Howard Per Martin-Löf
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Informal vs formal

Constructive type theory is meant to be a foundational system for
constructive mathematics.

As such, it is a formal system presented by rules.

However when working in type theory, arguments can be presented
informally (cf. “working in ZFC”).

Will try to be a little more formal today — one take-away is that
there is structure in the rules ready to be exploited.
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Judgements

Fundamental underlying concept: judgements.

“context” ` “statement”

n : N,m : N ` Booln+m type

Γ valid Γ is a well formed context
Γ ` A type A is a well formed type (in context Γ)
Γ ` a : A a is of type A
Γ ` A ≡ B A and B are the same type
Γ ` a ≡ a′ : A a and a′ are the same term (in type A)

Convention: We normally suppress mentioning Γ, and only show
context extensions x : A ` . . ..
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Inference rules

Formally type theory is given by a collection of inference rules

J1 . . . Jn
J

A judgement J is derivable if we can construct a derivation tree
with conclusion J using the inference rules. For example:

n : N,m : N ` Bool type

n : N,m : N ` n : N n : N,m : N ` m : N
n : N,m : N ` n + m : N

n : N,m : N ` Booln+m type

Of course, when working in type theory, we never explicitly
construct derivation trees!
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Caveats

Judgements are “external” — they cannot be proven inside the
language.

In contrast, “a ∈ A” in set theory is an “internal” statement.

Quiz: what makes sense to prove or disprove?

I 17 is a natural number (in type theory).

7 No, “17 : N” is a
judgement, not a statement.

I 17 is even.

X Yes, would expect “y : N ` Even[y ] type”.

I "hi" is even.

7 No, statement does not type-check, since
"hi" is not a natural number.

I π ∈ cos (in set theory).

X Yes.

Note that A ≡ B and a ≡ a′ : A also are “external” statements; we
will see an internal version that can be (dis)proven later.
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Basic rules

Variables:
Γ, x : A, Γ′ ` x : A

Conversion:
t : A A ≡ B

t : B

Judgemental equality:

t : A
t ≡ t : A

t ≡ s : A
s ≡ t : A

s ≡ t : A t ≡ u : A
s ≡ u : A

Congruence rules: for example

A ≡ A′ B ≡ B ′

(A→ B) ≡ (A′ → B ′)

(many more!)
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A pattern for introducing types

A type is usually given by four (five) groups of rules:

Formation What is needed to construct the type?

Introduction What is needed to construct canonical elements of
the type?

Elimination How can elements of the type be used?

Computation What happens when you eliminate canonical
elements? (“β-rules”)

Uniqueness (sometimes) How are functions into or out of the type
determined? (“η-rules”)
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Pair types

Formation
A type B type

A× B type

Introduction
a : A b : B
(a, b) : A× B

Elimination
p : A× B

fst p : A

p : A× B

snd p : B

Computation fst (a, b) ≡ a : A and snd (a, b) ≡ b : B.

Uniqueness
p : A× B

p ≡ (fst(p), snd(p)) : A× B

10



Pair types: alternative elimination and computation rules
Elimination

p : A× B

fst p : A

p : A× B

snd p : B

Computation fst (a, b) ≡ a : A and snd (a, b) ≡ b : B.

Uniqueness
p : A× B

p ≡ (fst(p), snd(p)) : A× B

Alternatively:

Elimination’

z : A× B ` C type x : A, y : B ` c : C [z 7→ (x , y)] p : A× B

elim×(C , c , p) : C [z 7→ p]

Computation’
elim×(C , c , (a, b)) ≡ c[x 7→ a, y 7→ b] : C [z 7→ (a, b)].

Exercise
Show that E + C follows from E’ + C’, and that E’ + C’ follows
from E + C + Uniqueness. Does Uniqueness follow from E’ + C’?
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Function types

Formation
A type B type

A→ B type

Introduction
x : A ` t : B

λ(x : A).t : A→ B

Elimination
f : A→ B a : A

f a : B

Computation (λ(x : A).t) a ≡ t[x 7→ a] : B

Uniqueness
f : A→ B

f ≡ (λ(x : A).f x) : A→ B
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Example: swap function

Given types A and B, let us write swap : A× B → B × A.

swap : A× B → B × A

swap = ?0 : A× B → B × A

x : A× B ` x : A× B
x : A× B ` snd x : B

x : A× B ` x : A× B
x : A× B ` fst x : A

x : A× B ` (snd x , fst x) : B × A

` λ(x : A× B).(snd x , fst x) : A× B → B × A
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The empty type

Formation
0 type

Introduction (none)

Elimination
C type p : 0

elim0(C , p) : C

Computation (none)

Exercise
Prove a dependent elimination rule from the non-dependent one:

z : 0 ` C type p : 0

elim0(C , p) : C [z 7→ p]

14



The unit type

Formation
1 type

Introduction ? : 1.

Elimination (none)

Computation (none)

Uniqueness
u : 1

u ≡ ? : 1

Exercise
Formulate and prove elimination and computation rules.
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Disjoint union type

Formation
A type B type

A + B type

Introduction
a : A

inl a : A + B
b : B

inr b : A + B

Elimination

z : A + B ` C type
x : A ` c : C [z 7→ inl x ]
y : B ` d : C [z 7→ inr y ] s : A + B

elim+(C , c , d , s) : C [z 7→ s]

Computation
elim+(C , c, d , inl a) ≡ c[x 7→ a] : C [z 7→ inl a]
elim+(C , c, d , inr b) ≡ d [y 7→ b] : C [z 7→ inr b]

Exercise
Define Bool = 1 + 1, and formulate and prove its rules.
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Dependent function types

Formation
A type x : A ` B type

(x : A)→ B type

Introduction
x : A ` t : B

λ(x : A).t : (x : A)→ B

Elimination
f : (x : A)→ B a : A

f a : B[x 7→ a]

Computation (λ(x : A).t) a ≡ t[x 7→ a] : B[x 7→ a]

Uniqueness
f : (x : A)→ B

f ≡ (λ(x : A).f x) : (x : A)→ B

A→ B is the special case when B does not depend on x : A.
17



Dependent pair types

Formation
A type x : A ` B type

(x : A)× B type

Introduction
a : A b : B[x 7→ a]

(a, b) : (x : A)× B

Elimination

p : (x : A)× B

fst p : A

p : (x : A)× B

snd p : B[x 7→ fst p]

Computation fst (a, b) ≡ a : A and snd (a, b) ≡ b : B[x 7→ a].

Uniqueness
p : (x : A)× B

p ≡ (fst(p), snd(p)) : (x : A)× B

A× B is the special case when B does not depend on x : A.
18



Example: The type-theoretic “Theorem of Choice”

Assume A type, B type and x : A, y : B ` R type.

ac :

(
(x : A)→

(
(y : B)× R[x , y ]

))
→

(
(f : A→ B)×

(
(x : A)→ R[x , f x ]

))
ac g = ?0 : (f : A→ B)×

(
(x : A)→ R[x , f x ]

)

A choice function exists in constructive mathematics, be-
cause a choice is implied by the very meaning of existence.
— Bishop 1967

However: does not work for “truncated pair types”, or setoids.
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However: does not work for “truncated pair types”, or setoids.
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Universes

A type U of types.

“À la Russel”:
A : U
A type

“À la Tarski”:
A : U

T (A) type

U contains “codes” for the types we are interested in. Allows
computing types from data (“large elimination”), by computing a
code in the universe instead.

A universe Type also allows abuse of notation “P : A→ Type” for
“x : A ` P type”.
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Natural numbers

Formation
N type

Introduction

0 : N
n : N

suc n : N

Elimination

z : N ` C type
c : C [z 7→ 0]

x : N, x̄ : C [z 7→ x ] ` d : C [z 7→ suc x ] n : N
elimN(C , c, d , n) : C [z 7→ n]

Computation
elimN(C , c , d , 0) ≡ c : C [z 7→ 0]

elimN(C , c , d , suc n) ≡ d [x 7→ n, x̄ 7→ elimN(C , c, d , n)] : C [z 7→ suc n]
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Lists

Formation
A type

ListA type

Introduction

[] : ListA
a : A as : ListA

(a :: as) : ListA

Elimination

as : ListA
z : ListA ` C type

c : C [z 7→ []]
xs : ListA, x̄s : C [z 7→ xs] ` d : C [z 7→ x :: xs]

elimList(C , c , d , as) : C [z 7→ as]

Computation
elimList(C , c , d , []) ≡ c : C [z 7→ []]

elimList(C , c , d , a :: as) ≡ d [xs 7→ as, x̄s 7→ elimList(C , c , d , as)] : C [a :: as]
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Propositions as types

A proof of . . . is, according to BHK. . .
A ∧ B a proof of A and a proof of B

A× B

A ∨ B a proof of A or a proof of B

A + B

A→ B a way to prove A given a proof of B

A→ B

> always has a proof

1

⊥ never has a proof

0

∀(x : A).B[x ] a way to prove B[a] for any a : A

(x : A)→ B

∃(x : A).B[x ] a choice of a : A and a proof of B[a]

(x : A)× B
s = t ?
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The identity type

Formation
A type a : A a′ : A

a =A a′ type

Introduction
a : A

refla : a =A a

Elimination

x : A, y : A, z : x =A y ` C type
x : A ` d : C [x 7→ x , y 7→ x , z 7→ reflx ] p : a =A a′

elim=(C , d , p) : C [x 7→ a, y 7→ a′, z 7→ p]

Computation
elim=(C , c , refla) ≡ d [x 7→ a] : C [x 7→ a, y 7→ a, z 7→ refla].

Exercise
Use elim= to show = is symmetric and transitive, and to define
subst : x =A y → P[x ]→ P[y ].
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Contentious axioms
Many extensions of type theory relates to the identity type.

Function extensionality:

(x : A)→ f x =B g x

f =(x :A)→B g

Extensional Type Theory: Adds the equality reflection rule

p : a =A b

a ≡ b : A

Uniqueness of Identity Proofs:

p : a =A b q : a =A b
p =a=Ab q

Univalence: “(A =Type B) ∼= (A ∼= B)”

We will try to avoid all of them.
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Summary/Outlook

Martin-Löf Type Theory a foundation for constructive
mathematics.

Judgement t : A means simultaneously:

I t is an object of type A

I t is a proof of the proposition A

Systematic way to add a type to the theory: formation,
introduction, elimination, computation rules.

Can we turn the systematic into a system?
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