
Universes of data types
in constructive type theory

Lecture 2: Inductive data types, generically

Fredrik Nordvall Forsberg

University of Strathclyde
https://fredriknf.com/pc22/

Proof and Computation 2022 Autumn School, Fischbachau

https://fredriknf.com/pc22/

Examples of inductive definitions
Martin-Löf (1972, 1979, 1980, . . .)

We have seen examples of inductive definitions such as N and lists.

Similarly the first accounts of Martin-Löf type theory included
specific inductive definitions:

I N, finite sets (1972)

I W-types (1979)

I Kleene’s O, lists (1980)

The system is considered open; new inductive types should be
added as needed.

“We can follow the same pattern used to define natural
numbers to introduce other inductively defined sets. We
see here the example of lists.” – Martin-Löf 1980

2

Church encodings
Pfenning and Paulin-Mohring (1989)

I First attempt in Calculus of Constructions: use Church
encodings of inductive types.

I E.g.

N := (X : Type)→ X → (X → X)→ X

: Type

a =A b := (X : A→ Type)→ X (a)→ X (b)

: Type

I Problems:
I Uses impredicativity in an essential way.

I Induction (dependent elimination) is not derivable in CoC for
any encoding [Geuvers 2001]. (Can be corrected using a
refined construction; see Awodey, Frey and Speight [2018].)

I Solution: Calculus of Inductive Constructions with inductive
types builtin (according to schema).

3

Church encodings
Pfenning and Paulin-Mohring (1989)

I First attempt in Calculus of Constructions: use Church
encodings of inductive types.

I E.g.

N := (X : Type)→ X → (X → X)→ X

: Type

a =A b := (X : A→ Type)→ X (a)→ X (b)

: Type

I Problems:
I Uses impredicativity in an essential way.

I Induction (dependent elimination) is not derivable in CoC for
any encoding [Geuvers 2001]. (Can be corrected using a
refined construction; see Awodey, Frey and Speight [2018].)

I Solution: Calculus of Inductive Constructions with inductive
types builtin (according to schema).

3

Church encodings
Pfenning and Paulin-Mohring (1989)

I First attempt in Calculus of Constructions: use Church
encodings of inductive types.

I E.g.

N := (X : Type)→ X → (X → X)→ X : Type

a =A b := (X : A→ Type)→ X (a)→ X (b) : Type

I Problems:
I Uses impredicativity in an essential way.

I Induction (dependent elimination) is not derivable in CoC for
any encoding [Geuvers 2001]. (Can be corrected using a
refined construction; see Awodey, Frey and Speight [2018].)

I Solution: Calculus of Inductive Constructions with inductive
types builtin (according to schema).

3

Church encodings
Pfenning and Paulin-Mohring (1989)

I First attempt in Calculus of Constructions: use Church
encodings of inductive types.

I E.g.

N := (X : Type)→ X → (X → X)→ X : Type

a =A b := (X : A→ Type)→ X (a)→ X (b) : Type

I Problems:
I Uses impredicativity in an essential way.

I Induction (dependent elimination) is not derivable in CoC for
any encoding [Geuvers 2001]. (Can be corrected using a
refined construction; see Awodey, Frey and Speight [2018].)

I Solution: Calculus of Inductive Constructions with inductive
types builtin (according to schema).

3

Church encodings
Pfenning and Paulin-Mohring (1989)

I First attempt in Calculus of Constructions: use Church
encodings of inductive types.

I E.g.

N := (X : Type)→ X → (X → X)→ X : Type

a =A b := (X : A→ Type)→ X (a)→ X (b) : Type

I Problems:
I Uses impredicativity in an essential way.

I Induction (dependent elimination) is not derivable in CoC for
any encoding [Geuvers 2001]. (Can be corrected using a
refined construction; see Awodey, Frey and Speight [2018].)

I Solution: Calculus of Inductive Constructions with inductive
types builtin (according to schema).

3

Syntactic schemata
Backhouse (1987), Coquand and Paulin-Mohring (1990), Dybjer (1994), . . .

Dybjer (1994) considers constructors of the form

introD : (A :: σ)

(b :: β[A])→
(u :: γ[A, b])→
D

where

I σ is a sequence of types for parameters [‘x :: Y ’ telescope
notation]

I β[A] is a sequence of types for non-inductive arguments.

I γ[A, b] is a sequence of types for inductive arguments:

I Each γi [A, b] is of the form ξi [A, b]→ D (strict positivity).

4

Syntactic schemata (cont.)

I The elimination and computation rules are determined by an
inversion principle.

I Infinite axiomatisation.

I Inprecise; ‘. . . ’ everywhere.

I No way to reason about an arbitrary inductive definition inside
the system (generic map etc.).

5

Syntax internalised
Dybjer and Setzer (1999, 2003, 2006) [for IR], Morris, Altenkirch and McBride (2007) . . .

I Setzer wanted to analyse the proof-theoretical strength of
Dybjer’s schema version of induction-recursion.

I Hard with lots of ‘. . . ’ around. . .

I So they developed an axiomatisation where the syntax has
been internalised into the system.

I Basic idea (simplified for inductive definitions) : the type is
“given by constructors”, so describe the domain of the
constructor

introDγ : Arg(γ,Dγ)→ Dγ

[γ is “code” that contains the necessary information to
describe Dγ .]

6

Basic idea in some more detail

I Universe SP of codes for the domain of constructors of
inductively defined sets. [SP stands for Strictly Positive.]

I Decoding function Arg : SP→ Type→ Type. [Arg(γ,X) is
the domain where X is used for the inductive arguments.]

I For every γ : SP, stipulate that there is a set Dγ and a
constructor introγ : Arg(γ,Dγ)→ Dγ .

I Calculate types for elimination and computation rules.

7

Underlying type theory (“logical framework”)

We assume we have the following types:

I Dependent function types (x : A)→ B

I Dependent pair types (x : A)× B

I A unit type 1, and a type of Booleans Bool

I (For future use: identity types a =A a′)

The rest we will add generically!

8

Underlying type theory (“logical framework”)

We assume we have the following types:

I Dependent function types (x : A)→ B

I Dependent pair types (x : A)× B

I A unit type 1, and a type of Booleans Bool

I (For future use: identity types a =A a′)

The rest we will add generically!

8

Idea for SP

Inductive types are determined by their constructors, so analyse
possible constructors.

For example:

:: : (x : A)→ (xs : ListA)→ ListA

I x : A is a non-inductive argument (later arguments could
depend on it)

I xs : ListA is an inductive argument (could also have infinite
arity)

Constructor for well-founded trees W S P:

sup : (s : S)→ (f : P[s]→W S P)→W S P

9

Idea for SP

Inductive types are determined by their constructors, so analyse
possible constructors.

For example:

:: : (x : A)→ (xs : ListA)→ ListA

I x : A is a non-inductive argument (later arguments could
depend on it)

I xs : ListA is an inductive argument (could also have infinite
arity)

Constructor for well-founded trees W S P:

sup : (s : S)→ (f : P[s]→W S P)→W S P

9

Idea for SP

Inductive types are determined by their constructors, so analyse
possible constructors.

For example:

:: : (x : A)→ (xs : ListA)→ ListA

I x : A is a non-inductive argument (later arguments could
depend on it)

I xs : ListA is an inductive argument (could also have infinite
arity)

Constructor for well-founded trees W S P:

sup : (s : S)→ (f : P[s]→W S P)→W S P

9

The universe SP of codes

Fix two universes (Usc ,Tsc) and (Uar ,Tar). We will draw side
conditions (non-inductive arguments) and arities of inductive
arguments from these.

Formation
SP type

Introduction
done : SP

A : Usc γ : Tsc(A)→ SP

nonindA γ : SP

A : Uar γ : SP

indA γ : SP

Elimination, computation . . .

By changing Usc and Uar , we can restrict to different subclasses of
inductive definitions.

10

Subclasses of inductive definitions

Discrete types:

I Usc = {discrete types}, Uar = {unit type}

Propositional types:

I Usc = {propositional types}, Uar = {arbitrary types}

Finite types:

I Usc = {finite types}, Uar = {finite types}

And so on.

11

Subclasses of inductive definitions

Discrete types:

I Usc = {discrete types}, Uar = {unit type}

Propositional types:

I Usc = {propositional types}, Uar = {arbitrary types}

Finite types:

I Usc = {finite types}, Uar = {finite types}

And so on.

11

Subclasses of inductive definitions

Discrete types:

I Usc = {discrete types}, Uar = {unit type}

Propositional types:

I Usc = {propositional types}, Uar = {arbitrary types}

Finite types:

I Usc = {finite types}, Uar = {finite types}

And so on.

11

Arg and Dγ

Codes are given their meaning by Arg : SP→ Type→ Type.

Arg doneX ≡ 1

Arg (nonindA γ)X ≡ (y : Tsc(A))× (Arg (γy)X)

Arg (indA γ)X ≡ (Tar (A)→ X)× (Arg γ X)

One generic inductive definition (parametrised by γ):

Formation
γ : SP

Dγ type

Introduction
x : Arg γ Dγ
introγ x : Dγ

12

Arg and Dγ

Codes are given their meaning by Arg : SP→ Type→ Type.

Arg doneX ≡ 1

Arg (nonindA γ)X ≡ (y : Tsc(A))× (Arg (γy)X)

Arg (indA γ)X ≡ (Tar (A)→ X)× (Arg γ X)

One generic inductive definition (parametrised by γ):

Formation
γ : SP

Dγ type

Introduction
x : Arg γ Dγ
introγ x : Dγ

12

Multiple constructors

Assuming Usc contains Bool, we can encode two constructors into
one:

γ +SP ψ := nonind(Bool, λx . if x then γ else ψ)

The point being:

Arg (γ +SP ψ)X ∼= (Arg γ X) + (Argψ X)

and (A + B → C) ∼= (A→ C)× (B → C).

13

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ ?0 : DγList A

:: : A→ ListA→ ListA

x :: xs ≡ ?1 : DγList A

14

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ introγList A ?2 : Arg γListADγList A

:: : A→ ListA→ ListA

x :: xs ≡ ?1 : DγList A

14

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ introγList A ?2 : (x : Bool)× (if x then 1 else A× (1→ ListA)× 1)

:: : A→ ListA→ ListA

x :: xs ≡ ?1 : DγList A

14

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ introγList A (tt, ?3 : if tt then 1 else A× (1→ ListA)× 1)

:: : A→ ListA→ ListA

x :: xs ≡ ?1 : DγList A

14

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ introγList A (tt, ?3 : 1)

:: : A→ ListA→ ListA

x :: xs ≡ ?1 : DγList A

14

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ introγList A (tt, ?)

:: : A→ ListA→ ListA

x :: xs ≡ ?1 : DγList A

14

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ introγList A (tt, ?)

:: : A→ ListA→ ListA

x :: xs ≡ introγList A ?4 : Arg γListADγList A

14

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ introγList A (tt, ?)

:: : A→ ListA→ ListA

x :: xs ≡ introγList A ?4 : (x : Bool)× (if x then 1 else A× (1→ ListA)× 1)

14

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ introγList A (tt, ?)

:: : A→ ListA→ ListA

x :: xs ≡ introγList A (ff, ?5 : A× (1→ ListA)× 1)

14

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ introγList A (tt, ?)

:: : A→ ListA→ ListA

x :: xs ≡ introγList A (ff, (?6 : A , ?6 : 1→ ListA , ?))

14

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ introγList A (tt, ?)

:: : A→ ListA→ ListA

x :: xs ≡ introγList A (ff, (x , ?6 : 1→ ListA , ?))

14

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ introγList A (tt, ?)

:: : A→ ListA→ ListA

x :: xs ≡ introγList A (ff, (x , λ . ?7 : ListA , ?))

14

Example: the code for ListA

We have

γListA ≡ done +SP nonind(A, λ .ind(1, done))

with ListA ≡ DγList A .

[] : ListA

[] ≡ introγList A (tt, ?)

:: : A→ ListA→ ListA

x :: xs ≡ introγList A (ff, (x , λ .xs, ?))

14

The type of induction hypothesis
To state elimination and computation rules, we need a little bit
more machinery.

Intuitively, the elimination rule says “it is enough to prove
P(introγ x) assuming P already holds for all substructures of x”.

Hence we define

All : (γ : SP)→ (X → Type)→ (Arg γ X → Type)

lifting P : X → Type to substructures:

All doneP ≡ 1

All (nonindA γ)P (a, y) ≡ All (γ a)P y

All (indA γ)P (g , y) ≡ ((x : Tar A)→ P (g x))× All γ P y

15

The type of induction hypothesis
To state elimination and computation rules, we need a little bit
more machinery.

Intuitively, the elimination rule says “it is enough to prove
P(introγ x) assuming P already holds for all substructures of x”.

Hence we define

All : (γ : SP)→ (X → Type)→ (Arg γ X → Type)

lifting P : X → Type to substructures:

All doneP ≡ 1

All (nonindA γ)P (a, y) ≡ All (γ a)P y

All (indA γ)P (g , y) ≡ ((x : Tar A)→ P (g x))× All γ P y

15

The type of induction hypothesis
To state elimination and computation rules, we need a little bit
more machinery.

Intuitively, the elimination rule says “it is enough to prove
P(introγ x) assuming P already holds for all substructures of x”.

Hence we define

All : (γ : SP)→ (X → Type)→ (Arg γ X → Type)

lifting P : X → Type to substructures:

All doneP ≡ 1

All (nonindA γ)P (a, y) ≡ All (γ a)P y

All (indA γ)P (g , y) ≡ ((x : Tar A)→ P (g x))× All γ P y

15

The type of induction hypothesis
To state elimination and computation rules, we need a little bit
more machinery.

Intuitively, the elimination rule says “it is enough to prove
P(introγ x) assuming P already holds for all substructures of x”.

Hence we define

All : (γ : SP)→ (X → Type)→ (Arg γ X → Type)

lifting P : X → Type to substructures:

All doneP ≡ 1

All (nonindA γ)P (a, y) ≡ All (γ a)P y

All (indA γ)P (g , y) ≡ ((x : Tar A)→ P (g x))× All γ P y

15

All acts on dependent functions

All doneP ≡ 1

All (nonindA γ)P (a, y) ≡ All (γ a)P y

All (indA γ)P (g , y) ≡ ((x : Tar A)→ P (g x))× All γ P y

To state the computation rule, we also need the following fact: we
can lift sections of P to sections of All γ P.

every : (γ : SP)→ (f : (x : X)→ P x)→ ((y : Arg γ X)→ All γ P y)

every done f ≡ ?
every (nonindA γ) f (a, y) ≡ every (γ a) f y

every (indA γ) f (g , y) ≡ (f ◦ g , every γ f y)

Exercise: Can you make sense of All as a functor in the
conventional sense? What categories are involved?

16

All acts on dependent functions

All doneP ≡ 1

All (nonindA γ)P (a, y) ≡ All (γ a)P y

All (indA γ)P (g , y) ≡ ((x : Tar A)→ P (g x))× All γ P y

To state the computation rule, we also need the following fact: we
can lift sections of P to sections of All γ P.

every : (γ : SP)→ (f : (x : X)→ P x)→ ((y : Arg γ X)→ All γ P y)

every done f ≡ ?
every (nonindA γ) f (a, y) ≡ every (γ a) f y

every (indA γ) f (g , y) ≡ (f ◦ g , every γ f y)

Exercise: Can you make sense of All as a functor in the
conventional sense? What categories are involved?

16

All acts on dependent functions

All doneP ≡ 1

All (nonindA γ)P (a, y) ≡ All (γ a)P y

All (indA γ)P (g , y) ≡ ((x : Tar A)→ P (g x))× All γ P y

To state the computation rule, we also need the following fact: we
can lift sections of P to sections of All γ P.

every : (γ : SP)→ (f : (x : X)→ P x)→ ((y : Arg γ X)→ All γ P y)

every done f ≡ ?
every (nonindA γ) f (a, y) ≡ every (γ a) f y

every (indA γ) f (g , y) ≡ (f ◦ g , every γ f y)

Exercise: Can you make sense of All as a functor in the
conventional sense? What categories are involved?

16

All acts on dependent functions

All doneP ≡ 1

All (nonindA γ)P (a, y) ≡ All (γ a)P y

All (indA γ)P (g , y) ≡ ((x : Tar A)→ P (g x))× All γ P y

To state the computation rule, we also need the following fact: we
can lift sections of P to sections of All γ P.

every : (γ : SP)→ (f : (x : X)→ P x)→ ((y : Arg γ X)→ All γ P y)

every done f ≡ ?
every (nonindA γ) f (a, y) ≡ every (γ a) f y

every (indA γ) f (g , y) ≡ (f ◦ g , every γ f y)

Exercise: Can you make sense of All as a functor in the
conventional sense? What categories are involved?

16

Elimination and computation rules

Formation
γ : SP

Dγ type

Introduction
x : Arg γ Dγ
introγ x : Dγ

Elimination

z : Dγ ` C type x : Arg γ Dγ , x̄ : All γ C x ` d : C [z 7→ introγ x] p : Dγ

elimγ(C , d , p) : C [z 7→ p]

Computation
elimγ(C , d , introγ a) ≡ d [x 7→ a, x̄ 7→ every γ (elimγ(C , d))] : C [z 7→ introγ a]

17

Elimination and computation rules

Formation
γ : SP

Dγ type

Introduction
x : Arg γ Dγ
introγ x : Dγ

Elimination

z : Dγ ` C type x : Arg γ Dγ , x̄ : All γ C x ` d : C [z 7→ introγ x] p : Dγ

elimγ(C , d , p) : C [z 7→ p]

Computation
elimγ(C , d , introγ a) ≡ d [x 7→ a, x̄ 7→ every γ (elimγ(C , d))] : C [z 7→ introγ a]

17

Example: induction for natural numbers
For N, we have γN ≡ done +SP ind(1, done).

Hence Arg γNX ∼= 1 + X .

We define 0 := introγN (inl ?) and suc n := introγN (inr n).

Further

All γN P 0 = 1

All γN P (suc n) ∼= P n

As expected, the “step function”

x : Arg γ Dγ , x̄ : All γ C x ` d : C [z 7→ introγ x]

thus splits up into d0 : C [z 7→ 0] and

n : N, n̄ : C [z 7→ n] ` dsuc : C [z 7→ suc n]

and we recover the usual induction principle.

18

Example: induction for natural numbers
For N, we have γN ≡ done +SP ind(1, done).

Hence Arg γNX ∼= 1 + X .

We define 0 := introγN (inl ?) and suc n := introγN (inr n).

Further

All γN P 0 = 1

All γN P (suc n) ∼= P n

As expected, the “step function”

x : Arg γ Dγ , x̄ : All γ C x ` d : C [z 7→ introγ x]

thus splits up into d0 : C [z 7→ 0] and

n : N, n̄ : C [z 7→ n] ` dsuc : C [z 7→ suc n]

and we recover the usual induction principle.

18

Example: induction for natural numbers
For N, we have γN ≡ done +SP ind(1, done).

Hence Arg γNX ∼= 1 + X .

We define 0 := introγN (inl ?) and suc n := introγN (inr n).

Further

All γN P 0 = 1

All γN P (suc n) ∼= P n

As expected, the “step function”

x : Arg γ Dγ , x̄ : All γ C x ` d : C [z 7→ introγ x]

thus splits up into d0 : C [z 7→ 0] and

n : N, n̄ : C [z 7→ n] ` dsuc : C [z 7→ suc n]

and we recover the usual induction principle.

18

Example: induction for natural numbers
For N, we have γN ≡ done +SP ind(1, done).

Hence Arg γNX ∼= 1 + X .

We define 0 := introγN (inl ?) and suc n := introγN (inr n).

Further

All γN P 0 = 1

All γN P (suc n) ∼= P n

As expected, the “step function”

x : Arg γ Dγ , x̄ : All γ C x ` d : C [z 7→ introγ x]

thus splits up into d0 : C [z 7→ 0] and

n : N, n̄ : C [z 7→ n] ` dsuc : C [z 7→ suc n]

and we recover the usual induction principle.
18

Does it make sense?

How do we know the proposed rules are sensible?

Could consider to prove “syntactic” theorems such as subject
reduction, strong normalisation, decidability of type checking, etc.

At the very least, we should be able to interpret the rules in
(ideally a wide range of) models.

Good first candidate: “naive” set-theoretic model.

19

Does it make sense?

How do we know the proposed rules are sensible?

Could consider to prove “syntactic” theorems such as subject
reduction, strong normalisation, decidability of type checking, etc.

At the very least, we should be able to interpret the rules in
(ideally a wide range of) models.

Good first candidate: “naive” set-theoretic model.

19

Does it make sense?

How do we know the proposed rules are sensible?

Could consider to prove “syntactic” theorems such as subject
reduction, strong normalisation, decidability of type checking, etc.

At the very least, we should be able to interpret the rules in
(ideally a wide range of) models.

Good first candidate: “naive” set-theoretic model.

19

Does it make sense?

How do we know the proposed rules are sensible?

Could consider to prove “syntactic” theorems such as subject
reduction, strong normalisation, decidability of type checking, etc.

At the very least, we should be able to interpret the rules in
(ideally a wide range of) models.

Good first candidate: “naive” set-theoretic model.

19

Does it make sense?

How do we know the proposed rules are sensible?

Could consider to prove “syntactic” theorems such as subject
reduction, strong normalisation, decidability of type checking, etc.

At the very least, we should be able to interpret the rules in
(ideally a wide range of) models.

Good first candidate: “naive” set-theoretic model.

19

Inductive definitions in classical set theory
Let us work in the closed-types-as-sets model:

J(x : A)→ BK =
∏

x∈JAK

JBK

J(x : A)× BK =
∑
x∈JAK

JBK

J1K = {?}
JBoolK = {0, 1}

Ja =A a′K = {? | JaK = Ja′K}
...

Ind. definitions represented by monotone operators Γ : Set→ Set.

For example: ΓN(X) = {0} ∪ {suc n | n ∈ X}.

Inductive definition I (Γ) interpreted as the result of iterating Γ:

∅ ⊆ Γ(∅) ⊆ Γ2(∅) ⊆ . . .

⊆
⋃
i<ω

Γi (∅)

⊆ Γ(
⋃
i<ω

Γi (∅)) ⊆ . . .

How do we know the process stops?

20

Inductive definitions in classical set theory
Let us work in the closed-types-as-sets model:

J(x : A)→ BK =
∏

x∈JAK

JBK

J(x : A)× BK =
∑
x∈JAK

JBK

J1K = {?}
JBoolK = {0, 1}

Ja =A a′K = {? | JaK = Ja′K}
...

Ind. definitions represented by monotone operators Γ : Set→ Set.

For example: ΓN(X) = {0} ∪ {suc n | n ∈ X}.

Inductive definition I (Γ) interpreted as the result of iterating Γ:

∅ ⊆ Γ(∅) ⊆ Γ2(∅) ⊆ . . .

⊆
⋃
i<ω

Γi (∅)

⊆ Γ(
⋃
i<ω

Γi (∅)) ⊆ . . .

How do we know the process stops?

20

Inductive definitions in classical set theory
Let us work in the closed-types-as-sets model:

J(x : A)→ BK =
∏

x∈JAK

JBK

J(x : A)× BK =
∑
x∈JAK

JBK

J1K = {?}
JBoolK = {0, 1}

Ja =A a′K = {? | JaK = Ja′K}
...

Ind. definitions represented by monotone operators Γ : Set→ Set.

For example: ΓN(X) = {0} ∪ {suc n | n ∈ X}.

Inductive definition I (Γ) interpreted as the result of iterating Γ:

∅ ⊆ Γ(∅) ⊆ Γ2(∅) ⊆ . . .

⊆
⋃
i<ω

Γi (∅)

⊆ Γ(
⋃
i<ω

Γi (∅)) ⊆ . . .

How do we know the process stops?

20

Inductive definitions in classical set theory
Let us work in the closed-types-as-sets model:

J(x : A)→ BK =
∏

x∈JAK

JBK

J(x : A)× BK =
∑
x∈JAK

JBK

J1K = {?}
JBoolK = {0, 1}

Ja =A a′K = {? | JaK = Ja′K}
...

Ind. definitions represented by monotone operators Γ : Set→ Set.

For example: ΓN(X) = {0} ∪ {suc n | n ∈ X}.

Inductive definition I (Γ) interpreted as the result of iterating Γ:

∅ ⊆ Γ(∅) ⊆ Γ2(∅) ⊆ . . . ⊆
⋃
i<ω

Γi (∅)

⊆ Γ(
⋃
i<ω

Γi (∅)) ⊆ . . .

How do we know the process stops?

20

Inductive definitions in classical set theory
Let us work in the closed-types-as-sets model:

J(x : A)→ BK =
∏

x∈JAK

JBK

J(x : A)× BK =
∑
x∈JAK

JBK

J1K = {?}
JBoolK = {0, 1}

Ja =A a′K = {? | JaK = Ja′K}
...

Ind. definitions represented by monotone operators Γ : Set→ Set.

For example: ΓN(X) = {0} ∪ {suc n | n ∈ X}.

Inductive definition I (Γ) interpreted as the result of iterating Γ:

∅ ⊆ Γ(∅) ⊆ Γ2(∅) ⊆ . . . ⊆
⋃
i<ω

Γi (∅) ⊆ Γ(
⋃
i<ω

Γi (∅)) ⊆ . . .

How do we know the process stops?

20

Inductive definitions in classical set theory
Let us work in the closed-types-as-sets model:

J(x : A)→ BK =
∏

x∈JAK

JBK

J(x : A)× BK =
∑
x∈JAK

JBK

J1K = {?}
JBoolK = {0, 1}

Ja =A a′K = {? | JaK = Ja′K}
...

Ind. definitions represented by monotone operators Γ : Set→ Set.

For example: ΓN(X) = {0} ∪ {suc n | n ∈ X}.

Inductive definition I (Γ) interpreted as the result of iterating Γ:

∅ ⊆ Γ(∅) ⊆ Γ2(∅) ⊆ . . . ⊆
⋃
i<ω

Γi (∅) ⊆ Γ(
⋃
i<ω

Γi (∅)) ⊆ . . .

How do we know the process stops?

20

How do we know the process stops?

Easy case: If we know Γ : P(V)→ P(V) for some set V , then
|V | must be an upper bound for the number of iterations needed.

Alternatively, I (Γ) can then be impredicatively constructed as the
intersection of all Γ-closed subsets of A (cf. Church encodings).

More work: Say Γ is κ-based for cardinal κ if x ∈ Γ(X) implies
x ∈ Γ(Y) for some Y ⊆ X with |Y | < κ. (cf. Aczel 1977)

Example: ΓN = X 7→ {0} ∪ {suc n | n ∈ X} is 2-based.

Thm: If Γ is κ-based for a regular κ, then I (Γ) = Γκ.

21

How do we know the process stops?

Easy case: If we know Γ : P(V)→ P(V) for some set V , then
|V | must be an upper bound for the number of iterations needed.

Alternatively, I (Γ) can then be impredicatively constructed as the
intersection of all Γ-closed subsets of A (cf. Church encodings).

More work: Say Γ is κ-based for cardinal κ if x ∈ Γ(X) implies
x ∈ Γ(Y) for some Y ⊆ X with |Y | < κ. (cf. Aczel 1977)

Example: ΓN = X 7→ {0} ∪ {suc n | n ∈ X} is 2-based.

Thm: If Γ is κ-based for a regular κ, then I (Γ) = Γκ.

21

How do we know the process stops?

Easy case: If we know Γ : P(V)→ P(V) for some set V , then
|V | must be an upper bound for the number of iterations needed.

Alternatively, I (Γ) can then be impredicatively constructed as the
intersection of all Γ-closed subsets of A (cf. Church encodings).

More work: Say Γ is κ-based for cardinal κ if x ∈ Γ(X) implies
x ∈ Γ(Y) for some Y ⊆ X with |Y | < κ. (cf. Aczel 1977)

Example: ΓN = X 7→ {0} ∪ {suc n | n ∈ X} is 2-based.

Thm: If Γ is κ-based for a regular κ, then I (Γ) = Γκ.

21

How do we know the process stops?

Easy case: If we know Γ : P(V)→ P(V) for some set V , then
|V | must be an upper bound for the number of iterations needed.

Alternatively, I (Γ) can then be impredicatively constructed as the
intersection of all Γ-closed subsets of A (cf. Church encodings).

More work: Say Γ is κ-based for cardinal κ if x ∈ Γ(X) implies
x ∈ Γ(Y) for some Y ⊆ X with |Y | < κ. (cf. Aczel 1977)

Example: ΓN = X 7→ {0} ∪ {suc n | n ∈ X} is 2-based.

Thm: If Γ is κ-based for a regular κ, then I (Γ) = Γκ.

21

Soundness of SP

It is not hard to show that Arg γ is monotone for each γ : SP.

Further each Arg γ is κ-based, if κ is greater than the cardinality of
each set occurring as a side condition or an arity in γ. A regular κ′

with this property always exists (using classical logic).

Hence I (Arg γ) exists.

The elimination principle can be interpreted using that I (Arg γ) is
the least fixed point.

22

Soundness of SP

It is not hard to show that Arg γ is monotone for each γ : SP.

Further each Arg γ is κ-based, if κ is greater than the cardinality of
each set occurring as a side condition or an arity in γ. A regular κ′

with this property always exists (using classical logic).

Hence I (Arg γ) exists.

The elimination principle can be interpreted using that I (Arg γ) is
the least fixed point.

22

Soundness of SP

It is not hard to show that Arg γ is monotone for each γ : SP.

Further each Arg γ is κ-based, if κ is greater than the cardinality of
each set occurring as a side condition or an arity in γ. A regular κ′

with this property always exists (using classical logic).

Hence I (Arg γ) exists.

The elimination principle can be interpreted using that I (Arg γ) is
the least fixed point.

22

Soundness of SP

It is not hard to show that Arg γ is monotone for each γ : SP.

Further each Arg γ is κ-based, if κ is greater than the cardinality of
each set occurring as a side condition or an arity in γ. A regular κ′

with this property always exists (using classical logic).

Hence I (Arg γ) exists.

The elimination principle can be interpreted using that I (Arg γ) is
the least fixed point.

22

Soundness of SP

It is not hard to show that Arg γ is monotone for each γ : SP.

Further each Arg γ is κ-based, if κ is greater than the cardinality of
each set occurring as a side condition or an arity in γ. A regular κ′

with this property always exists (using classical logic).

Hence I (Arg γ) exists.

The elimination principle can be interpreted using that I (Arg γ) is
the least fixed point.

22

Generic programming
One advantage of a uniform presentation of inductive definitions is
that it explains what they all have in common.

Another is that we can now reason about inductive definitions
internally, by reasoning about γ : SP.

Many programming languages have special facilities for writing
generic programs that can be instantiated to concrete data types,
e.g. deriving Eq in Haskell.

With a universe of inductive definitions, we have

Generic programming = Programming

A more high-level language with data declarations etc can be
elaborated to codes using the universe of inductive definitions.

23

Generic programming
One advantage of a uniform presentation of inductive definitions is
that it explains what they all have in common.

Another is that we can now reason about inductive definitions
internally, by reasoning about γ : SP.

Many programming languages have special facilities for writing
generic programs that can be instantiated to concrete data types,
e.g. deriving Eq in Haskell.

With a universe of inductive definitions, we have

Generic programming = Programming

A more high-level language with data declarations etc can be
elaborated to codes using the universe of inductive definitions.

23

Generic programming
One advantage of a uniform presentation of inductive definitions is
that it explains what they all have in common.

Another is that we can now reason about inductive definitions
internally, by reasoning about γ : SP.

Many programming languages have special facilities for writing
generic programs that can be instantiated to concrete data types,
e.g. deriving Eq in Haskell.

With a universe of inductive definitions, we have

Generic programming = Programming

A more high-level language with data declarations etc can be
elaborated to codes using the universe of inductive definitions.

23

Generic programming
One advantage of a uniform presentation of inductive definitions is
that it explains what they all have in common.

Another is that we can now reason about inductive definitions
internally, by reasoning about γ : SP.

Many programming languages have special facilities for writing
generic programs that can be instantiated to concrete data types,
e.g. deriving Eq in Haskell.

With a universe of inductive definitions, we have

Generic programming = Programming

A more high-level language with data declarations etc can be
elaborated to codes using the universe of inductive definitions.

23

Generic programming
One advantage of a uniform presentation of inductive definitions is
that it explains what they all have in common.

Another is that we can now reason about inductive definitions
internally, by reasoning about γ : SP.

Many programming languages have special facilities for writing
generic programs that can be instantiated to concrete data types,
e.g. deriving Eq in Haskell.

With a universe of inductive definitions, we have

Generic programming = Programming

A more high-level language with data declarations etc can be
elaborated to codes using the universe of inductive definitions.

23

Example: decidable equality

Let us implement deriving Eq.

Rather than just saying yes or no, let us also produce evidence that
Dec (x =A y) := (x =A y) + (x 6=A y).

Obviously side conditions need to have decidable equality, and we
only allow finitary constructors.

We mutually define

eq : (γ : SP)→ (x : Dγ)→ (y : Dγ)→ Dec (x = y)

eqArg : (γ, γ′ : SP)→ (x : Arg γ Dγ′)→ (y : Arg γ Dγ′)→ Dec (x = y)

24

Example: decidable equality

Let us implement deriving Eq.

Rather than just saying yes or no, let us also produce evidence that
Dec (x =A y) := (x =A y) + (x 6=A y).

Obviously side conditions need to have decidable equality, and we
only allow finitary constructors.

We mutually define

eq : (γ : SP)→ (x : Dγ)→ (y : Dγ)→ Dec (x = y)

eqArg : (γ, γ′ : SP)→ (x : Arg γ Dγ′)→ (y : Arg γ Dγ′)→ Dec (x = y)

24

Example: decidable equality

Let us implement deriving Eq.

Rather than just saying yes or no, let us also produce evidence that
Dec (x =A y) := (x =A y) + (x 6=A y).

Obviously side conditions need to have decidable equality, and we
only allow finitary constructors.

We mutually define

eq : (γ : SP)→ (x : Dγ)→ (y : Dγ)→ Dec (x = y)

eqArg : (γ, γ′ : SP)→ (x : Arg γ Dγ′)→ (y : Arg γ Dγ′)→ Dec (x = y)

24

25

Summary

Generic treatment of inductive definitions in type theory using a
universe of data types.

Can be given set-theoretic semantics using iteration of monotone
operators.

In type theory, “Generic programming” = “Programming”.

26

	Attempts at formalising inductive definitions in type theory
	A datatype of datatypes
	A universe SP of codes
	Decoding using Arg
	Elimination rules

	Semantics in set theory
	Inductive definitions in set theory
	Soundness of SP

	Generic programming
	Summary

