Universes of data types
in constructive type theory

https://fredriknf.com/pc22/

Inductive families

We have seen how to describe inductive types such as N and lists
using a universe of data type codes.

What about predicates such as Even : N — Type?

Formation
n:N
Even n type
Introduction
n:N e: Evenn

ez : Even0 essnp : Even (suc (sucn))

Inductive families

We have seen how to describe inductive types such as N and lists
using a universe of data type codes.

What about predicates such as Even : N — Type?

Formation
n:N
Even n type
Introduction
n:N e:Evenn
ez : Even0 essnp : Even (suc (sucn))

Remark: Not the case that each Even n is self-contained inductive
definition — pedantic difference between family of inductive types
and inductive family of types. (Dybjer [1994])

Another example: canonical finite types

Inductive family Fin : N — Type, where Fin n has exactly n

elements.

Given by two constructors

fz: (n: N) — Fin (sucn)
fs: (n:N) — Finn — Fin (sucn)

Fin0O | Finl | Fin2 | Fin3 Fin4 Fin5 Fin6
fz fz fz
fsfz fs fs fs fsfz
fsfsfz fsfs fsfs fsfs
fsfsfsfz fsfsfs fsfsfs
fsfsfsfsfz fsfsfsfs
fsfsfsfsfsfz

Describing inductive families

Let us describe inductive families | — Type.

Compared to describing inductive types, not much changes — all
data still contained in types of constructors.

» We need to record the index of the constructed element.

> We need to record the index of inductive arguments.

Describing inductive families

Let us describe inductive families | — Type.

Compared to describing inductive types, not much changes — all
data still contained in types of constructors.

» We need to record the index of the constructed element.

> We need to record the index of inductive arguments.

Formation
SP type
Introduction
done : SP
A Type v:A—SP A : Type ~v:SP

nonind A~ : SP ind A~ : SP

Describing inductive families
Let us describe inductive families | — Type.

Compared to describing inductive types, not much changes — all
data still contained in types of constructors.

» We need to record the index of the constructed element.

» We need to record the index of inductive arguments.

Formation
I type
SPF | type
Introduction
done : SPF/
A: Type v:A— SPF/ A : Type ~v:SPF I

nonind A~ : SPF / ind A~ : SPF/

Describing inductive families
Let us describe inductive families | — Type.

Compared to describing inductive types, not much changes — all
data still contained in types of constructors.

» We need to record the index of the constructed element.

» We need to record the index of inductive arguments.

Formation
I type
SPF | type
Introduction)
Il
done : SPF/
A Type v:A— SPFI A : Type ~v:SPF I

nonind A~y : SPF / ind A~ : SPF/

Describing inductive families
Let us describe inductive families | — Type.

Compared to describing inductive types, not much changes — all
data still contained in types of constructors.

» We need to record the index of the constructed element.

» We need to record the index of inductive arguments.

Formation
I type
SPF | type
Introduction)
I .
done : SPF/

A : Type v:A— SPF/ A Type f-A—1 ~v : SPF I

nonind Ay : SPF | ind A~ : SPF/

Arg and D,
The type of the decoding changes to

Arg : SPF I — (I — Type) — (I — Type)

Arg and D,
The type of the decoding changes to

Arg : SPF I — (I — Type) — (I — Type)

Arg (done i) Xj = (i =)
Arg (nonind Av) Xj = (a: A) x (Arg(ya) X))
Arg (indAfy)Xj=((a: A) — X(fa)) x (Argy X}j)

Arg and D,
The type of the decoding changes to

Arg : SPF I — (I — Type) — (I — Type)

Arg (done) Xj= (i =,))
Arg (nonind Av) Xj = (a: A) x (Arg(ya) X))
Arg (indAfy)Xj=((a: A) — X (fa)) x (Argy X}j)

Arg and D,
The type of the decoding changes to

Arg : SPF I — (I — Type) — (I — Type)

Arg (done) Xj= (i =,))
Arg (nonind Av) Xj = (a: A) x (Arg(ya) X))
Arg (indAfy)Xj=((a: A) — X (fa)) x (Argy X}j)

Generic rules:

Formation
~v:SPF/

D, : 1 — Type

Introduction))
il x:Argy Dy i

introy x : Dy i

Example: code for Fin : N — Type
Recall Fin was given by constructors
fz: (n: N) — Fin (sucn)
fs: (n: N) — Finn — Fin (sucn)

Example: code for Fin : N — Type

Recall Fin was given by constructors

fz: (n: N) — Fin (sucn)

fs: (n: N) — Finn — Fin (sucn)
Again we can combine two codes into one with

v +spE ¥ := nonind(Bool, Ax if x then vy else)

Example: code for Fin : N — Type

Recall Fin was given by constructors
fz: (n: N) — Fin (sucn)
fs: (n: N) — Finn — Fin (sucn)
Again we can combine two codes into one with
v +spE ¥ := nonind(Bool, Ax if x then vy else)
and give a code for Fin as

Yrin := (nonind N (A n.done (suc n)))+spr
(nonind N (X n.ind 1 (A_.n) done (suc n)))

Example: code for Fin : N — Type

Recall Fin was given by constructors
fz: (n: N) — Fin (sucn)
fs: (n: N) — Finn — Fin (sucn)
Again we can combine two codes into one with
v +spE ¥ := nonind(Bool, Ax if x then vy else)
and give a code for Fin as

Yrin := (nonind N (A n.done (suc n)))+spr
(nonind N (X n.ind 1 (A_.n) done (suc n)))

Remark: We can equivalently “factor out” the common code
‘nonind N':

Ytin := nonind N (A n.((done (suc n))+sprind 1 (A_.n) done (suc n)))

which is a description divirging from “a finite list of constructors”.

Induction versus recursion

Note that because N is an inductive type, we can also define
Fin : N — Type by recursion (using large elimination).

Fin0:=0
Fin(sucn) :==1+ Finn

Induction versus recursion

Note that because N is an inductive type, we can also define
Fin : N — Type by recursion (using large elimination).

Fin0:=0
Fin(sucn) :==1+ Finn
Inductive definition: given by constructors.

Recursive definition: function defined on all constructors.

Induction versus recursion

Note that because N is an inductive type, we can also define
Fin : N — Type by recursion (using large elimination).

Fin0:=0
Fin(sucn) :==1+ Finn
Inductive definition: given by constructors.
Recursive definition: function defined on all constructors.

It can make sense to define D : A — Type inductively even if A is
not an inductive type.

Soundness

Compared to inductive types, inductive families do not really add
any proof-theoretical strength to type theory.

This is also reflected in the naive model construction, which
basically stays the same.

Denormalised finite types

A finite type is isomorphic to Fin n for some n, but might have
more structure, e.g.

(d : Weekday) — Hours[d] x Minutes[d] x Seconds[d]

As an exercise, can we describe finite types with their structure
intact?

An attempt to describe finite types with popular operations

Formation
FinType type

Introduction

10

An attempt to describe finite types with popular operations
Formation
FinType type
Introduction
n:N
finn: FinType

10

An attempt to describe finite types with popular operations
Formation
FinType type
Introduction
n:N
finn: FinType

a: FinType b : FinType
a x¢ b: FinType

10

An attempt to describe finite types with popular operations
Formation
FinType type
Introduction
n:N
finn : FinType

a: FinType b : FinType a: FinType b : FinType
axfb:FinType a+y¢ b: FinType

10

An attempt to describe finite types with popular operations
Formation
FinType type

Introduction
n:N
finn : FinType

a: FinType b : FinType a: FinType b : FinType
axfb:FinType a+y¢ b: FinType

a: FinType b 777 — FinType
> ,b: FinType

a: FinType b : 777 — FinType
M,b: FinType

10

An attempt to describe finite types with popular operations
Formation
FinType type
Introduction
n:N
finn : FinType

a: FinType b : FinType a: FinType b : FinType
axfb:FinType a+y¢ b: FinType

a: FinType b:Fin?? — FinType
> ,b: FinType

a: FinType b:Fin?? — FinType
M,b: FinType

10

The size of a finite type
We need to simultaneously compute the size of finite types!

11

The size of a finite type
We need to simultaneously compute the size of finite types!

Formation

FinType type size : FinType - N

11

The size of a finite type

We need to simultaneously compute the size of finite types!

Formation

FinType type size : FinType - N
Introduction
n:N
finn: FinType
a: FinType b : FinType
a xf b:FinType

a: FinType b : FinType
a+¢ b:FinType

a: FinType b:Fin?? — FinType
2> ,b: FinType

a: FinType b: Fin?? — FinType
;b : FinType

The size of a finite type
We need to simultaneously compute the size of finite types!

Formation

FinType type size : FinType - N
Introduction
n:N
finn: FinType

a: FinType b : FinType
a xX¢ b: FinType

a: FinType b : FinType
a+¢ b:FinType

a: FinType b : Fin (size a) — FinType

> ,b: FinType

a: FinType b : Fin (size a) — FinType

;b : FinType

The size of a finite type
We need to simultaneously compute the size of finite types!

Formation

FinType type size : FinType - N

Introduction
n: N size(finn) =n
finn: FinType -
a: FinType b : FinType
a x¢ b:FinType

a: FinType b : FinType
a+¢ b:FinType

a: FinType b : Fin (size a) — FinType

> ,b: FinType

a: FinType b : Fin (size a) — FinType

;b : FinType

The size of a finite type
We need to simultaneously compute the size of finite types!

Formation

FinType type size : FinType - N

Introduction
n: N size(finn) =n
finn: FinType -
a: FinType b : FinType
a x¢ b:FinType

size (a x¢ b) = sizea - size b

a: FinType b : FinType
a+¢ b:FinType

a: FinType b : Fin (size a) — FinType

> ,b: FinType

a: FinType b : Fin (size a) — FinType

;b : FinType

11

The size of a finite type
We need to simultaneously compute the size of finite types!

Formation

FinType type size : FinType - N

Introduction
n: N size(finn) =n
finn: FinType -
a: FinType b : FinType
a x¢ b:FinType

size (a x¢ b) = sizea - size b

a: FinType b : FinType
a+¢ b:FinType

size (a+f b) =sizea + size b

a: FinType b : Fin (size a) — FinType

> ,b: FinType

a: FinType b : Fin (size a) — FinType

;b : FinType

11

The size of a finite type
We need to simultaneously compute the size of finite types!

Formation

FinType type size : FinType - N

Introduction
n: N size(finn) =n
finn: FinType -
a: FinType b : FinType
a x¢ b:FinType

size (a x¢ b) = sizea - size b

a: FinType b : FinType
a+¢ b:FinType

size (a+f b) =sizea + size b

a: FinType b : Fin (size a) — FinType

Y .b : FinType size (X,b) = sum (size a)(size o b)

a: FinType b : Fin (size a) — FinType

size (M,b) = prod (size a)(size o b

11

;b : FinType

What happened?

We defined FinType inductively, and at “the same time” we
defined size : FinType — N recursively.

12

What happened?

We defined FinType inductively, and at “the same time” we
defined size : FinType — N recursively.

This is what Dybjer [2000] calls an inductive-recursive definition.

12

What happened?

We defined FinType inductively, and at “the same time” we
defined size : FinType — N recursively.

This is what Dybjer [2000] calls an inductive-recursive definition.

Typical use case: construct data and its interpretation at the
same time.

12

What happened?

We defined FinType inductively, and at “the same time” we
defined size : FinType — N recursively.

This is what Dybjer [2000] calls an inductive-recursive definition.

Typical use case: construct data and its interpretation at the
same time.

For example: a universe and its decoding.

a:Uu b:T(a)—» U
cab: U

T(ocab)=(x:Ta)x (T (bx))

Induction-recursion allows you to construct your own bespoke
universes of types.

12

Acting on families
Inductive families had a fixed index set /; they are initial algebras
of functors (I — Type) — (I — Type).

Inductive-recursive definitions on the other hand also generate the
index set, which is not fixed; they are initial algebras of functors
Fam D — Fam D for some (possibly large) type D.

Fam D := (/ : Type) x (I — D)

13

Acting on families

Inductive families had a fixed index set /; they are initial algebras
of functors (I — Type) — (I — Type).

Inductive-recursive definitions on the other hand also generate the
index set, which is not fixed; they are initial algebras of functors
Fam D — Fam D for some (possibly large) type D.

Fam D := (/ : Type) x (I — D)
Lemma: When D is small, there is an equivalence

powfam : (D — Type) = Fam D
with

powfam P = ((d : D) x P[d], fst)
fampow (A, Q) = Ad.(a: A) x ((Qa) =p d)

(simple version of Grothendieck construction).

13

Describing inductive-recursive definitions

Following Dybjer and Setzer [1999, 2003], we again start from the
universe SP.

» We need to record what the decoding of the constructed
element is.

P> Later arguments may depend on the decoding of inductive
arguments.

14

Describing inductive-recursive definitions

Following Dybjer and Setzer [1999, 2003], we again start from the
universe SP.

» We need to record what the decoding of the constructed
element is.

P> Later arguments may depend on the decoding of inductive

arguments.
Formation
SP type
Introduction
done : SP

A Type v:A—SP A: Type ~v:SP
nonind A~y : SP ind A~ : SP

14

Describing inductive-recursive definitions
Following Dybjer and Setzer [1999, 2003], we again start from the

universe SP.

» We need to record what the decoding of the constructed
element is.

> Later arguments may depend on the decoding of inductive

arguments.
Formation
D type
IR D type
Introduction
done : SP

A Type v:A—SP A Type ~v:SP
nonind A~y : SP ind A~ : SP

14

Describing inductive-recursive definitions

Following Dybjer and Setzer [1999, 2003], we again start from the
universe SP.

» We need to record what the decoding of the constructed
element is.

> Later arguments may depend on the decoding of inductive

arguments.
Formation
D type
IR D type
Introduction
d: D
done: IRD

A Type v:A—SP A Type ~v:SP
nonind Ay : SP ind Ay : SP

14

Describing inductive-recursive definitions

Following Dybjer and Setzer [1999, 2003], we again start from the
universe SP.

» We need to record what the decoding of the constructed
element is.

> Later arguments may depend on the decoding of inductive

arguments.
Formation
D type
IR D type
Introduction
d: D
done: IRD

A Type v:A—=IRD A Type ~v:SP
nonind A~ : IRD ind A~ : SP

14

Describing inductive-recursive definitions
Following Dybjer and Setzer [1999, 2003], we again start from the
universe SP.
> We need to record what the decoding of the constructed
element is.

» Later arguments may depend on the decoding of inductive

arguments.
Formation
D type
IR D type
Introduction
_d:D
done : IRD

A Type v:A—=IRD A Type v:(A—D)—=IRD
nonind A~ : IRD indA~:IRD

14

Arg and D,
The type of the decoding changes to

Arg : IRD —- Fam D — Fam D

15

Arg and D,
The type of the decoding changes to

Arg : IRD —- Fam D — Fam D

Arg (doned) (U, T) = (1,_.d)
Arg (nonind Av) (U, T) = X,.4(Arg(va) (U, T))
Arg (ind Ay) (U, T) = Xgasu(Arg (v (T o g)) (U, T))

15

Arg and D,
The type of the decoding changes to

Arg : IRD —- Fam D — Fam D

Arg (doned) (U, T) = (1,_.d)
Arg (nonind Av) (U, T) = X,.4(Arg(va) (U, T))
Arg (ind Ay) (U, T) = Xgasu(Arg (v (T o g)) (U, T))

Generic rules:

Formation
v :IRD

U, type

T,:U,— D

Introduction
x : fst(Argvy (U, T,))
intro, x : Dy i

T, (intro, x) = snd(Arg v (U,, T5)) x

15

Soundness of inductive-recursive definitions

Again the rules can be justified using a set-theoretical model.

16

Soundness of inductive-recursive definitions

Again the rules can be justified using a set-theoretical model.

However this time it is much harder to prove that least fixed points
exist — uses large cardinal assumption that a Mahlo cardinal exists.

(Def: An Inaccessible cardinal M is Mahlo is every normal function
M — M has an inaccessible fixed point.)

16

Soundness of inductive-recursive definitions

Again the rules can be justified using a set-theoretical model.

However this time it is much harder to prove that least fixed points
exist — uses large cardinal assumption that a Mahlo cardinal exists.

(Def: An Inaccessible cardinal M is Mahlo is every normal function
M — M has an inaccessible fixed point.)

Using a Mahlo cardinal makes some sense, because “Mahlo
universes” can be constructed using induction-recursion.

16

Reducing small induction-recursion to inductive families
The situation re proof-theoretic strength is completely different if
D is a small set; all the power of induction-recursion lies in the
ability to represent large things as small things.

17

Reducing small induction-recursion to inductive families
The situation re proof-theoretic strength is completely different if
D is a small set; all the power of induction-recursion lies in the
ability to represent large things as small things.

To be precise: Small induction-recursion can be reduced to
inductive families, which do not add proof-theoretical strength
beyond inductive types [Hancock, McBride, Ghani, Malatesta and
Altenkirch, 2013].

17

Reducing small induction-recursion to inductive families

The situation re proof-theoretic strength is completely different if
D is a small set; all the power of induction-recursion lies in the
ability to represent large things as small things.

To be precise: Small induction-recursion can be reduced to
inductive families, which do not add proof-theoretical strength
beyond inductive types [Hancock, McBride, Ghani, Malatesta and
Altenkirch, 2013].

To be even more precise: for small D, we can define
translate : IRD — SPF D

such that

A
Fam D BRY Fam D

powfam()/fampow powfam(>fampow

(D — Type) (D — Type)

Argspr (translate)

17

Idea of translation

Main idea: Make all inductive arguments display their decoding in
their index.

Quantify over new non-inductive arguments to represent these
indices (~» smallness assumption).

18

Idea of translation

Main idea: Make all inductive arguments display their decoding in
their index.

Quantify over new non-inductive arguments to represent these
indices (~» smallness assumption).

For example,

a: FinType b : Fin (size a) — FinType) _
.5 FinType size (X,b) = sum (size a)(size o b)
ab:

becomes

n:N a:FinType'n m:Finn— N b:(x:Finn)— FinType' (mx)

onamb : FinType' (sum nm)

18

Idea of translation

Main idea: Make all inductive arguments display their decoding in
their index.

Quantify over new non-inductive arguments to represent these
indices (~» smallness assumption).

For example,

a: FinType b : Fin (size a) — FinType) _
.5 FinType size (X,b) = sum (size a)(size o b)
ab:

becomes

n:N a:FinType'n m:Finn— N b:(x:Finn)— FinType' (mx)

onamb : FinType' (sum nm)

Using powfam, we then define [FinType] = (n: N) x FinType’ n
and [size] = fst.
18

Summary

Variations on the universe SP of data type descriptions can also
describe inductive families and inductive-recursive definitions.

The latter increases the strength of the theory immensely.

However small inductive-recursive definitions can be reduced to
mere inductive families.

This reduction can be carried out internally by translating codes for
IR into codes for SPF and proving that their meaning is preserved.

Many topics not covered, e.g.:
» Higher inductive types

» Inductive-inductive definitions (cf. recent work by Kovacs
and Kaposi)

» Models of induction-recursion in constructive set theories

» Coinductive definitions

19

	Inductive families
	Examples
	Describing inductive families
	Semantics

	Inductive-recursive definitions
	Motivation
	Describing inductive-recursive definitions
	Semantics
	Reducing small induction-recursion to inductive families

	Summary

