
TypOS: An “Operating System” for Typechecking Actors

Guillaume Allais Malin Altenmüller Conor McBride
Georgi Nakov Fredrik Nordvall Forsberg Craig Roy

University of St Andrews, University of Strathclyde, and Quantinuum

22 June 2022, TYPES, Nantes

A domain-specific language for typecheckers

An experiment in how to write typecheckers that make (more)
sense.

Similar endeavours: Andromeda [Bauer, Haselwarter and Petkovic
2020], Redex [Felleisen, Findler and Flatt 2009], Turnstyle+
[Chang, Ballantyne, Turner and Bowman], . . .

However we try to minimise demands on the order in which
subproblems are solved.

Conor McBride, 20 years ago implementing Epigram 1:

“[redacted] me, I’m implementing an operating system!”

Concrete motivation: implementing a type theory with rich
equational theory for free monoids and free Abelian groups.

1

A domain-specific language for typecheckers

An experiment in how to write typecheckers that make (more)
sense.

Similar endeavours: Andromeda [Bauer, Haselwarter and Petkovic
2020], Redex [Felleisen, Findler and Flatt 2009], Turnstyle+
[Chang, Ballantyne, Turner and Bowman], . . .

However we try to minimise demands on the order in which
subproblems are solved.

Conor McBride, 20 years ago implementing Epigram 1:

“[redacted] me, I’m implementing an operating system!”

Concrete motivation: implementing a type theory with rich
equational theory for free monoids and free Abelian groups.

1

A domain-specific language for typecheckers

An experiment in how to write typecheckers that make (more)
sense.

Similar endeavours: Andromeda [Bauer, Haselwarter and Petkovic
2020], Redex [Felleisen, Findler and Flatt 2009], Turnstyle+
[Chang, Ballantyne, Turner and Bowman], . . .

However we try to minimise demands on the order in which
subproblems are solved.

Conor McBride, 20 years ago implementing Epigram 1:

“[redacted] me, I’m implementing an operating system!”

Concrete motivation: implementing a type theory with rich
equational theory for free monoids and free Abelian groups.

1

A domain-specific language for typecheckers

An experiment in how to write typecheckers that make (more)
sense.

Similar endeavours: Andromeda [Bauer, Haselwarter and Petkovic
2020], Redex [Felleisen, Findler and Flatt 2009], Turnstyle+
[Chang, Ballantyne, Turner and Bowman], . . .

However we try to minimise demands on the order in which
subproblems are solved.

Conor McBride, 20 years ago implementing Epigram 1:

“[redacted] me, I’m implementing an operating system!”

Concrete motivation: implementing a type theory with rich
equational theory for free monoids and free Abelian groups.

1

A domain-specific language for typecheckers

An experiment in how to write typecheckers that make (more)
sense.

Similar endeavours: Andromeda [Bauer, Haselwarter and Petkovic
2020], Redex [Felleisen, Findler and Flatt 2009], Turnstyle+
[Chang, Ballantyne, Turner and Bowman], . . .

However we try to minimise demands on the order in which
subproblems are solved.

Conor McBride, 20 years ago implementing Epigram 1:

“[redacted] me, I’m implementing an operating system!”

Concrete motivation: implementing a type theory with rich
equational theory for free monoids and free Abelian groups.

1

Why not just a shallow embedding?

Logical Framework aspects: we implement syntax with binding
once, and then it Just Works.

Resumptions should be updatable: progress might have
happened while a process was asleep.

Ruling out design errors by construction: a first-order
representation means we can do static analysis on the typecheckers
themselves.

2

Why not just a shallow embedding?

Logical Framework aspects: we implement syntax with binding
once, and then it Just Works.

Resumptions should be updatable: progress might have
happened while a process was asleep.

Ruling out design errors by construction: a first-order
representation means we can do static analysis on the typecheckers
themselves.

2

Why not just a shallow embedding?

Logical Framework aspects: we implement syntax with binding
once, and then it Just Works.

Resumptions should be updatable: progress might have
happened while a process was asleep.

Ruling out design errors by construction: a first-order
representation means we can do static analysis on the typecheckers
themselves.

2

Why not just a shallow embedding?

Logical Framework aspects: we implement syntax with binding
once, and then it Just Works.

Resumptions should be updatable: progress might have
happened while a process was asleep.

Ruling out design errors by construction: a first-order
representation means we can do static analysis on the typecheckers
themselves.

2

ATour ofTypOS

Syntax descriptions

We support a Lisp-style generic syntax for terms:

I atoms ’a

I cons lists [t0 t1 . . . tn]

I variables x and bindings \x.t

Simple and uniform to write and parse.

Users can restrict the shape of terms using context-free syntax
descriptions.

We always offer a Wildcard description allowing
anything.

There is a syntax description of syntax descriptions, which we use
to check syntax descriptions.

3

Syntax descriptions

We support a Lisp-style generic syntax for terms:

I atoms ’a

I cons lists [t0 t1 . . . tn]

I variables x and bindings \x.t

Simple and uniform to write and parse.

Users can restrict the shape of terms using context-free syntax
descriptions.

We always offer a Wildcard description allowing
anything.

There is a syntax description of syntax descriptions, which we use
to check syntax descriptions.

3

Syntax descriptions

We support a Lisp-style generic syntax for terms:

I atoms ’a

I cons lists [t0 t1 . . . tn]

I variables x and bindings \x.t

Simple and uniform to write and parse.

Users can restrict the shape of terms using context-free syntax
descriptions.

We always offer a Wildcard description allowing
anything.

There is a syntax description of syntax descriptions, which we use
to check syntax descriptions.

3

Syntax descriptions

We support a Lisp-style generic syntax for terms:

I atoms ’a

I cons lists [t0 t1 . . . tn]

I variables x and bindings \x.t

Simple and uniform to write and parse.

Users can restrict the shape of terms using context-free syntax
descriptions.

We always offer a Wildcard description allowing
anything.

There is a syntax description of syntax descriptions, which we use
to check syntax descriptions.

3

Syntax descriptions

We support a Lisp-style generic syntax for terms:

I atoms ’a

I cons lists [t0 t1 . . . tn]

I variables x and bindings \x.t

Simple and uniform to write and parse.

Users can restrict the shape of terms using context-free syntax
descriptions. We always offer a Wildcard description allowing
anything.

There is a syntax description of syntax descriptions, which we use
to check syntax descriptions.

3

Syntax descriptions

We support a Lisp-style generic syntax for terms:

I atoms ’a

I cons lists [t0 t1 . . . tn]

I variables x and bindings \x.t

Simple and uniform to write and parse.

Users can restrict the shape of terms using context-free syntax
descriptions. We always offer a Wildcard description allowing
anything.

There is a syntax description of syntax descriptions, which we use
to check syntax descriptions.

3

Judgement forms as interaction protocols

We recast the notion of judgement form as communication
protocol:

I What to communicate (of what syntax description)?

I In which direction (input or output)?

A basic form of session types [Honda 1993].

For example:

type : ?’Type.

check : ?’Type. ?’Check.

synth : ?’Synth. !’Type.

4

Judgement forms as interaction protocols

We recast the notion of judgement form as communication
protocol:

I What to communicate (of what syntax description)?

I In which direction (input or output)?

A basic form of session types [Honda 1993].

For example:

type : ?’Type.

check : ?’Type. ?’Check.

synth : ?’Synth. !’Type.

4

Judgement forms as interaction protocols

We recast the notion of judgement form as communication
protocol:

I What to communicate (of what syntax description)?

I In which direction (input or output)?

A basic form of session types [Honda 1993].

For example:

type : ?’Type.

check : ?’Type. ?’Check.

synth : ?’Synth. !’Type.

4

Typing rules as actors

“A rule is a server for its conclusion, and a client for its premises.”

That is: typing rules are implemented by actors, which

I must fulfill their protocol with respect to their parent;

I typically spawns children processes for all its premises.

Inspired by the actor model [Hewitt, Bishop and Steiger 1973] of
concurrent programming.

Typechecking process actor with parent channel p is defined by

actor@p = ...

5

Typing rules as actors

“A rule is a server for its conclusion, and a client for its premises.”

That is: typing rules are implemented by actors, which

I must fulfill their protocol with respect to their parent;

I typically spawns children processes for all its premises.

Inspired by the actor model [Hewitt, Bishop and Steiger 1973] of
concurrent programming.

Typechecking process actor with parent channel p is defined by

actor@p = ...

5

Typing rules as actors

“A rule is a server for its conclusion, and a client for its premises.”

That is: typing rules are implemented by actors, which

I must fulfill their protocol with respect to their parent;

I typically spawns children processes for all its premises.

Inspired by the actor model [Hewitt, Bishop and Steiger 1973] of
concurrent programming.

Typechecking process actor with parent channel p is defined by

actor@p = ...

5

Typing rules as actors

“A rule is a server for its conclusion, and a client for its premises.”

That is: typing rules are implemented by actors, which

I must fulfill their protocol with respect to their parent;

I typically spawns children processes for all its premises.

Inspired by the actor model [Hewitt, Bishop and Steiger 1973] of
concurrent programming.

Typechecking process actor with parent channel p is defined by

actor@p = ...

5

Actor constructs: winning

a successful, finished actor

(Victory is silent.)

6

Actor constructs: failing

"error message"
an unsuccessful, finished actor

7

Actor constructs: printing

PRINTF "message text".
printing a message before continuing

8

Actor constructs: generating fresh meta variables

sd?X.
generate a fresh meta X of syntax description sd

Meta variables stand for unknown terms.

9

Actor constructs: generating fresh meta variables

sd?X.
generate a fresh meta X of syntax description sd

Meta variables stand for unknown terms.

9

Actor constructs: matching on terms

case t { p1 -> a1 ; ...}
match term t against patterns pi ; continue as actor ai when matching

Blocks if t is a metavariable.

10

Actor constructs: matching on terms

case t { p1 -> a1 ; ...}
match term t against patterns pi ; continue as actor ai when matching

Blocks if t is a metavariable.

10

Actor constructs: forking

a | b
continue as a and b in parallel

Progress in b might enable further progress in a and vice versa.

11

Actor constructs: forking

a | b
continue as a and b in parallel

Progress in b might enable further progress in a and vice versa.

11

Actor constructs: declaring constraints

t1 ∼ t2

make t1 unify with t2

12

Actor constructs: spawning children

actor@p.
spawn a new child actor on channel p

13

Actor constructs: sending and receiving messages

p!t.
send term t on channel p

p?t.
receive term t on channel p

Messages must conform to p’s protocol.

14

Actor constructs: sending and receiving messages

p!t.
send term t on channel p

p?t.
receive term t on channel p

Messages must conform to p’s protocol.

14

Actor constructs: sending and receiving messages

p!t.
send term t on channel p

p?t.
receive term t on channel p

Messages must conform to p’s protocol.

14

Actor constructs: binding local variables

\ x .
bring fresh object variable x into scope

15

Actor constructs: extending local contexts

ctx |- x -> t
extend declared context ctx to map object variable x to term t

16

Actor constructs: querying local contexts

if x in ctx { t -> a } else b
Look up variable x in declared context ctx ;

if found, bind associated value as t and continue as a,
otherwise continue as b

17

Actors for bidirectional type checking of STLC

check@p = p?ty. p?tm. case tm

{ [’Lam \x. body] -> ’Type?S. ’Type?T.

(ty ~ [’Arr S T]

| \x. ctxt |- x -> S. check@q. q!T. q!body.)

; [’Emb e] -> synth@q. q!e. q?S. S ~ ty }

synth@p = p?tm. if tm in ctxt

{ S -> p!S. }

else case tm

{ [’Ann t T] -> (type@q. q!T.

| check@r. r!T. r!t.

| p!T.)

; [’App f s] -> ’Type?S. ’Type?T. p!T.

(synth@q. q!f. q?F. F ~ [’Arr S T]

| check@r. r!S. r!s.) }

18

Executing actors

We currently run actors on a stack-based virtual machine.

We run each actor until it blocks, and then try the next one, until
execution stabilises.

Metavariables are shared, which is okay, since they are updated
monotonically [Kuper 2015].

We can extract a typing derivation from the final configuration of
the stack.

19

Executing actors

We currently run actors on a stack-based virtual machine.

We run each actor until it blocks, and then try the next one, until
execution stabilises.

Metavariables are shared, which is okay, since they are updated
monotonically [Kuper 2015].

We can extract a typing derivation from the final configuration of
the stack.

19

Executing actors

We currently run actors on a stack-based virtual machine.

We run each actor until it blocks, and then try the next one, until
execution stabilises.

Metavariables are shared, which is okay, since they are updated
monotonically [Kuper 2015].

We can extract a typing derivation from the final configuration of
the stack.

19

Executing actors

We currently run actors on a stack-based virtual machine.

We run each actor until it blocks, and then try the next one, until
execution stabilises.

Metavariables are shared, which is okay, since they are updated
monotonically [Kuper 2015].

We can extract a typing derivation from the final configuration of
the stack.

19

Executing actors

We currently run actors on a stack-based virtual machine.

We run each actor until it blocks, and then try the next one, until
execution stabilises.

Metavariables are shared, which is okay, since they are updated
monotonically [Kuper 2015].

We can extract a typing derivation from the final configuration of
the stack.

19

Some examples

typos --latex=stlc.tex stlc.act

type N→ NX

N 3 ?u
w1 : N `

N→ N 3 λ .?u
(λ .?u : N→ N) ∈ N→ N

z0 ∈ NX

N 3 z0
X

(λ .?u : N→ N)z0 ∈ N
N 3 (λ .?u : N→ N)z0

z0 : N `
N→ N 3 λz .(λ .?u : N→ N)z

20

typos --latex=stlc.tex stlc.act completed

type N→ NX

N 3 ZeroX

N 3 [Succ Zero]X

w1 : N `
N→ N 3 λ .[Succ Zero]X

(λ .[Succ Zero] : N→ N) ∈ N→ NX

z0 ∈ NX

N 3 z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ NX

N 3 (λ .[Succ Zero] : N→ N)z0
X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)zX

21

typos --latex-animated=stlc-ann.tex stlc.act

type

N→ NXXXXXXXXXXXXX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`
N→ N

3

λ .[Succ Zero]XXXXXX

(λ .[Succ Zero] : N→ N)

∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0

∈

???NX

N

3

(λ .[Succ Zero] : N→ N)z0
X

z0 :

N

`

N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type

N→ NXXXXXXXXXXXXX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`
N→ N

3

λ .[Succ Zero]XXXXXX

(λ .[Succ Zero] : N→ N)

∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0

∈

???NX

N

3

(λ .[Succ Zero] : N→ N)z0
X

z0 :

N

`
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type

N→ NXXXXXXXXXXXXX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`
N→ N

3

λ .[Succ Zero]XXXXXX

(λ .[Succ Zero] : N→ N)

∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0

∈

???NX

N 3

(λ .[Succ Zero] : N→ N)z0
X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type

N→ NXXXXXXXXXXXXX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`
N→ N

3

λ .[Succ Zero]XXXXXX

(λ .[Succ Zero] : N→ N)

∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0

∈

???NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type

N→ NXXXXXXXXXXXXX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`
N→ N

3

λ .[Succ Zero]XXXXXX

(λ .[Succ Zero] : N→ N)

∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈

???NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type

N→ NXXXXXXXXXXXXX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`
N→ N

3

λ .[Succ Zero]XXXXXX

(λ .[Succ Zero] : N→ N)

∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type

N→ NXXXXXXXXXXXXX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`
N→ N

3

λ .[Succ Zero]XXXXXX

(λ .[Succ Zero] : N→ N) ∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXXXXXXXXXXXX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`
N→ N

3

λ .[Succ Zero]XXXXXX

(λ .[Succ Zero] : N→ N) ∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXXXXXXXXXXXX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`
N→ N

3

λ .[Succ Zero]XXXXXX

(λ .[Succ Zero] : N→ N) ∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXXXXXXXXXXXX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`
N→ N

3

λ .[Succ Zero]XXXXXX

(λ .[Succ Zero] : N→ N) ∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXXXXXXXXXX

X

X

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`

N→ N 3

λ .[Succ Zero]XXXXXX

(λ .[Succ Zero] : N→ N) ∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXXXXXXXXX

X

XX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`

N→ N 3 λ .[Succ Zero]

XXXXXX

(λ .[Succ Zero] : N→ N) ∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXXXXXXXX

X

XXX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`
N→ N 3 λ .[Succ Zero]

XXXXXX

(λ .[Succ Zero] : N→ N) ∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXXXXXXX

X

XXXX

N

3

ZeroXXXXXX

N 3

[Succ Zero]XXXXXX

w1 : N `
N→ N 3 λ .[Succ Zero]

XXXXXX

(λ .[Succ Zero] : N→ N) ∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXXXXXX

X

XXXXX

N

3

ZeroXXXXXX

N 3 [Succ Zero]

XXXXXX

w1 : N `
N→ N 3 λ .[Succ Zero]

XXXXXX

(λ .[Succ Zero] : N→ N) ∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXXXXX

X

XXXXXX

N 3

ZeroXXXXXX

N 3 [Succ Zero]

XXXXXX

w1 : N `
N→ N 3 λ .[Succ Zero]

XXXXXX

(λ .[Succ Zero] : N→ N) ∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXXXX

X

XXXXXXX

N 3 Zero

XXXXXX

N 3 [Succ Zero]

XXXXXX

w1 : N `
N→ N 3 λ .[Succ Zero]

XXXXXX

(λ .[Succ Zero] : N→ N) ∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXXX

X

XXXXXXXX

N 3 Zero

XXXX

X

X

N 3 [Succ Zero]

XXXX

X

X

w1 : N `
N→ N 3 λ .[Succ Zero]

XXXX

X

X

(λ .[Succ Zero] : N→ N) ∈ N→ N

XXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ ???

NX

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXX

X

XXXXXXXXX

N 3 Zero

XXX

X

XX

N 3 [Succ Zero]

XXX

X

XX

w1 : N `
N→ N 3 λ .[Succ Zero]

XXX

X

XX

(λ .[Succ Zero] : N→ N) ∈ N→ N

XXX

X

X

z0

∈

NX

N 3

z0
X

(λ .[Succ Zero] : N→ N)z0 ∈

???

N

X

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XX

X

XXXXXXXXXX

N 3 Zero

XX

X

XXX

N 3 [Succ Zero]

XX

X

XXX

w1 : N `
N→ N 3 λ .[Succ Zero]

XX

X

XXX

(λ .[Succ Zero] : N→ N) ∈ N→ N

XX

X

XX

z0

∈

NX

N 3 z0

X

(λ .[Succ Zero] : N→ N)z0 ∈

???

N

X

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

X

X

XXXXXXXXXXX

N 3 Zero

X

X

XXXX

N 3 [Succ Zero]

X

X

XXXX

w1 : N `
N→ N 3 λ .[Succ Zero]

X

X

XXXX

(λ .[Succ Zero] : N→ N) ∈ N→ N

X

X

XXX

z0 ∈

NX

N 3 z0

X

(λ .[Succ Zero] : N→ N)z0 ∈

???

N

X

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ NX

XXXXXXXXXXXX

N 3 ZeroX

XXXXX

N 3 [Succ Zero]X

XXXXX

w1 : N `
N→ N 3 λ .[Succ Zero]X

XXXXX

(λ .[Succ Zero] : N→ N) ∈ N→ NX

XXXX

z0 ∈ N

X

N 3 z0

X

(λ .[Succ Zero] : N→ N)z0 ∈

???

N

X

N 3 (λ .[Succ Zero] : N→ N)z0

X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X

22

typos --latex-animated=stlc-ann.tex stlc.act

type N→ N

XXXXXXXXXXXX

X

N 3 Zero

XXXXX

X

N 3 [Succ Zero]

XXXXX

X

w1 : N `
N→ N 3 λ .[Succ Zero]

XXXXX

X

(λ .[Succ Zero] : N→ N) ∈ N→ N

XXXX

X

z0 ∈ NX

N 3 z0
X

(λ .[Succ Zero] : N→ N)z0 ∈

???

NX

N 3 (λ .[Succ Zero] : N→ N)z0
X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)zX

22

Verification of actors

What do we get by construction?

I Protocols and modes =⇒ rely/guarantee contracts

I Actors only knowing about free variables they themselves
create =⇒ stability under substitution

I “Schematic variables” have one explicit binding site =⇒
scopes are not escaped

I . . .

23

Verification of actors

What do we get by construction?

I Protocols and modes =⇒ rely/guarantee contracts

I Actors only knowing about free variables they themselves
create =⇒ stability under substitution

I “Schematic variables” have one explicit binding site =⇒
scopes are not escaped

I . . .

23

Verification of actors

What do we get by construction?

I Protocols and modes =⇒ rely/guarantee contracts

I Actors only knowing about free variables they themselves
create =⇒ stability under substitution

I “Schematic variables” have one explicit binding site =⇒
scopes are not escaped

I . . .

23

Verification of actors

What do we get by construction?

I Protocols and modes =⇒ rely/guarantee contracts

I Actors only knowing about free variables they themselves
create =⇒ stability under substitution

I “Schematic variables” have one explicit binding site =⇒
scopes are not escaped

I . . .

23

Verification of actors

What do we get by construction?

I Protocols and modes =⇒ rely/guarantee contracts

I Actors only knowing about free variables they themselves
create =⇒ stability under substitution

I “Schematic variables” have one explicit binding site =⇒
scopes are not escaped

I . . .

23

Summary and future work

TypOS is an domain-specific language for writing typecheckers.

Judgements have modes (input/output protocols), typing rules are
actors (spawning and communicating with children).

A wide range of typechecking, evaluation and elaboration processes
can be implemented this way.

In the future: a truly concurrent runtime.

https://github.com/msp-strath/TypOS

24

https://github.com/msp-strath/TypOS

Summary and future work

TypOS is an domain-specific language for writing typecheckers.

Judgements have modes (input/output protocols), typing rules are
actors (spawning and communicating with children).

A wide range of typechecking, evaluation and elaboration processes
can be implemented this way.

In the future: a truly concurrent runtime.

https://github.com/msp-strath/TypOS

24

Thank you!

https://github.com/msp-strath/TypOS

References
In order of appearance

I Andrej Bauer, Philipp G. Haselwarter, and Anja Petkovic. Equality
checking for general type theories in Andromeda 2. In Anna Maria
Bigatti, Jacques Carette, James H. Davenport, Michael Joswig, and Timo
de Wolff, editors, ICMS 20, pages 253–259. Springer, 2020.

I Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics
Engineering with PLT Redex. MIT Press, 2009.

I Stephen Chang, Michael Ballantyne, Milo Turner, and William J.
Bowman. Dependent type systems as macros. Proc. ACM Program.
Lang., 4(POPL):3:1–3:29, 2020.

I Kohei Honda. Types for dyadic interaction. In Eike Best, editor,
CONCUR 93, pages 509–523. Springer, 1993.

I Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular
actor formalism for artificial intelligence. In IJCAI 73, pages 235–245.
Morgan Kaufmann Publishers, 1973.

I Lindsey Kuper. Lattice-Based Data Structures For Deterministic Parallel
And Distributed Programming. PhD thesis, Indiana University, 2015.

Image credits:

I “Shakespeare’s Globe Theatre, London” by Neil Howard, https://flic.kr/p/LtqfmA, CC BY-NC 2.0

I “L’Opéra Graslin (Le Voyage à Nantes)” by Jean-Pierre Dalbra, https://flic.kr/p/f9BB5h, CC BY 2.0

25

https://flic.kr/p/LtqfmA
https://flic.kr/p/f9BB5h

	Motivation
	A Tour of TypOS
	Syntax descriptions
	Judgement forms as interaction protocols
	Typing rules as actors
	Executing actors

	Examples
	Verification of actors
	Summary and future work
	References

