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A domain-specific language for typecheckers

An experiment in how to write typecheckers that make (more)
sense.

Similar endeavours: Andromeda [Bauer, Haselwarter and Petkovic
2020], Redex [Felleisen, Findler and Flatt 2009], Turnstyle+
[Chang, Ballantyne, Turner and Bowman], . . .

However we try to minimise demands on the order in which
subproblems are solved.

Conor McBride, 20 years ago implementing Epigram 1:

“[redacted] me, I’m implementing an operating system!”

Concrete motivation: implementing a type theory with rich
equational theory for free monoids and free Abelian groups.
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Why not just a shallow embedding?

Logical Framework aspects: we implement syntax with binding
once, and then it Just Works.

Resumptions should be updatable: progress might have
happened while a process was asleep.

Ruling out design errors by construction: a first-order
representation means we can do static analysis on the typecheckers
themselves.
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Syntax descriptions

We support a Lisp-style generic syntax for terms:

I atoms ’a

I cons lists [t0 t1 . . . tn]

I variables x and bindings \x.t

Simple and uniform to write and parse.

Users can restrict the shape of terms using context-free syntax
descriptions.

We always offer a Wildcard description allowing
anything.

There is a syntax description of syntax descriptions, which we use
to check syntax descriptions.
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Judgement forms as interaction protocols

We recast the notion of judgement form as communication
protocol:

I What to communicate (of what syntax description)?

I In which direction (input or output)?

A basic form of session types [Honda 1993].

For example:

type : ?’Type.

check : ?’Type. ?’Check.

synth : ?’Synth. !’Type.
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Typing rules as actors

“A rule is a server for its conclusion, and a client for its premises.”

That is: typing rules are implemented by actors, which

I must fulfill their protocol with respect to their parent;

I typically spawns children processes for all its premises.

Inspired by the actor model [Hewitt, Bishop and Steiger 1973] of
concurrent programming.

Typechecking process actor with parent channel p is defined by

actor@p = ...
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Actor constructs: winning

a successful, finished actor

(Victory is silent.)
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Actor constructs: failing

# "error message"
an unsuccessful, finished actor
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Actor constructs: printing

PRINTF "message text".
printing a message before continuing

8



Actor constructs: generating fresh meta variables

sd?X.
generate a fresh meta X of syntax description sd

Meta variables stand for unknown terms.
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Actor constructs: matching on terms

case t { p1 -> a1 ; ...}
match term t against patterns pi ; continue as actor ai when matching

Blocks if t is a metavariable.
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Actor constructs: forking

a | b
continue as a and b in parallel

Progress in b might enable further progress in a and vice versa.
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Actor constructs: declaring constraints

t1 ∼ t2

make t1 unify with t2
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Actor constructs: spawning children

actor@p.
spawn a new child actor on channel p
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Actor constructs: sending and receiving messages

p!t.
send term t on channel p

p?t.
receive term t on channel p

Messages must conform to p’s protocol.
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Actor constructs: binding local variables

\ x .
bring fresh object variable x into scope
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Actor constructs: extending local contexts

ctx |- x -> t
extend declared context ctx to map object variable x to term t
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Actor constructs: querying local contexts

if x in ctx { t -> a } else b
Look up variable x in declared context ctx ;

if found, bind associated value as t and continue as a,
otherwise continue as b

17



Actors for bidirectional type checking of STLC

check@p = p?ty. p?tm. case tm

{ [’Lam \x. body] -> ’Type?S. ’Type?T.

( ty ~ [’Arr S T]

| \x. ctxt |- x -> S. check@q. q!T. q!body.)

; [’Emb e] -> synth@q. q!e. q?S. S ~ ty }

synth@p = p?tm. if tm in ctxt

{ S -> p!S. }

else case tm

{ [’Ann t T] -> ( type@q. q!T.

| check@r. r!T. r!t.

| p!T. )

; [’App f s] -> ’Type?S. ’Type?T. p!T.

( synth@q. q!f. q?F. F ~ [’Arr S T]

| check@r. r!S. r!s.) }
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Executing actors

We currently run actors on a stack-based virtual machine.

We run each actor until it blocks, and then try the next one, until
execution stabilises.

Metavariables are shared, which is okay, since they are updated
monotonically [Kuper 2015].

We can extract a typing derivation from the final configuration of
the stack.
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Some examples



typos --latex=stlc.tex stlc.act

type N→ NX

N 3 ?u
w1 : N `

N→ N 3 λ .?u
(λ .?u : N→ N) ∈ N→ N

z0 ∈ NX

N 3 z0
X

(λ .?u : N→ N)z0 ∈ N
N 3 (λ .?u : N→ N)z0

z0 : N `
N→ N 3 λz .(λ .?u : N→ N)z
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typos --latex=stlc.tex stlc.act completed

type N→ NX

N 3 ZeroX

N 3 [Succ Zero]X

w1 : N `
N→ N 3 λ .[Succ Zero]X

(λ .[Succ Zero] : N→ N) ∈ N→ NX

z0 ∈ NX

N 3 z0
X

(λ .[Succ Zero] : N→ N)z0 ∈ NX

N 3 (λ .[Succ Zero] : N→ N)z0
X

z0 : N `
N→ N 3 λz .(λ .[Succ Zero] : N→ N)zX
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typos --latex-animated=stlc-ann.tex stlc.act

type

N→ NXXXXXXXXXXXXX

N

3

ZeroXXXXXX

N

3

[Succ Zero]XXXXXX

w1 :

N

`
N→ N

3

λ .[Succ Zero]XXXXXX

(λ .[Succ Zero] : N→ N)

∈

N→ NXXXXX

z0

∈

NX

N

3

z0
X

(λ .[Succ Zero] : N→ N)z0

∈

???NX

N

3

(λ .[Succ Zero] : N→ N)z0
X

z0 :

N

`

N→ N 3 λz .(λ .[Succ Zero] : N→ N)z

X
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Verification of actors

What do we get by construction?

I Protocols and modes =⇒ rely/guarantee contracts

I Actors only knowing about free variables they themselves
create =⇒ stability under substitution

I “Schematic variables” have one explicit binding site =⇒
scopes are not escaped

I . . .
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Summary and future work

TypOS is an domain-specific language for writing typecheckers.

Judgements have modes (input/output protocols), typing rules are
actors (spawning and communicating with children).

A wide range of typechecking, evaluation and elaboration processes
can be implemented this way.

In the future: a truly concurrent runtime.

https://github.com/msp-strath/TypOS
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Thank you!

https://github.com/msp-strath/TypOS
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