
June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 1

1

Type systems for programs respecting dimensions

Conor McBride and Fredrik Nordvall-Forsberg

Computer and Information Sciences, University of Strathclyde

Type systems can be used for tracking dimensional consistency of numerical

computations: we present an extension from dimensions of scalar quantities
to dimensions of vectors and matrices, making use of dependent types from
programming language theory. We show that our types are unique, and most

general. We further show that we can give straightforward dimensioned types to
many common matrix operations such as addition, multiplication, determinants,
traces, and fundamental row operations.

Keywords: Units of Measure; Dimensions; Type systems; Dependent types.

1. Introduction

Measurements of physical quantitites naturally come with dimensions such

as mass, length and time, and so on. The casual conceptual conflation of

physical quantities with mere numbers is a standard computational practice

resulting in lamentable errors, notoriously such as colliding with Mars1.

A common approach to addressing this problem is to bundle numbers

with units in compound data structures, then check dynamically whether

arithmetic operations make sense before performing them. However, that

approach pushes to run time what is much better managed at the time of

a program’s construction. It is far better to render dimensional nonsense

unthinkable than merely to promise to complain if it happens.

In the field of programming languages, type systems are used to classify

programs by the type of data they manipulate, such as integers, booleans,

functions from integers to integers, and so on. Type information is used

to guarantee once and for ever that certain classes of errors will not hap-

pen when running the program, such as feeding an integer to a function

expecting a boolean as an input. Types not only police mistakes, but also

mentor development of programs, by structuring the space of meaningful

subprograms that can be used to compute a particular intermediate result.

For numerical programs, both dimension checking and type checking

are important for the overall trust in computed results. Type systems are

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 2

2

natural tools for mechanising the concept of dimensional analysis, yielding a

lightweight approach to data integrity for metrology. Indeed, there is already

work in this direction, with dimension types implemented in mainstream

languages using a plethora of techniques, ranging from static types to

dynamic run-time checks (see Bennich-Björkman and McKeever2 for a

comprehensive survey of libraries for dimension and unit checking):

• Microsoft’s F#3 has units of measure built in to static type checking;

• C++’s Boost Units library4 uses templates to check units statically;

• Java has a proposed API adding classes for dimensioned quantities5, but

run-time casts are inevitable;

• Haskell’s type system can now encode basic units of measure as a library6;

• Python libraries such as Pint7 cannot do static checking of dimensional

correctness, but implement run-time checks instead.

None of the above support static units for compound data structures,

such as vectors and matrices, except in overly uniform ways (e.g. matrices

of quantities all in the same dimension). Here, we develop a type system

for the dimensions of those matrices representing linear transformations

between “dimensioned” vector spaces. Hart8 developed the theory of such

matrices, to which we gratefully contribute a rendering as a type system.

Since dimensions have an equational theory richer than routinely available

in mainstream programming languages (Sec. 2), we will need dependent

types (Sec. 3) to be accurate about dimensioned matrices and operations

thereon (Sec. 4). Griffioen has explored this direction9, but so far without

dependent types, yielding a rigid set of primitive matrix operations.

2. Units of Measure, mathematically

When computing with numbers intended as physical quantities, one cheap

way to promote virtue over vice is to ascribe physical dimensions to those

numbers. It is standard (as in the Système Internationale), to fix a set of

fundamental dimensions such as length, time and mass, then fix standard

units (base units) for each: respectively metre, second and kilogram. We

may multiply and divide dimensions, so that velocity is length per time and

force is mass times distance per time squared. Formally, we define:

Definition 2.1. The free abelian group G on set G has (i) an identity

element, 1; (ii) multiplication, · , satisfying 1 ·x = x, (x · y) · z = x ·(y · z)
and x · y = y ·x; (iii) inversion, −1, satisfying x−1·x = 1; (iv) generators,

G ⊂ G.

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 3

3

We now take the fundamental dimensions as G and obtain the free

abelian group G of all the dimensions. What makes G free is that every

homomorphism (structure-preserving interpretation) from G to any other

abelian group is determined exactly by the interpretation of G. We read-

ily obtain a normal form for dimensions by imposing (arbitrarily) a total

order on G, e.g. mass M before length L before time T, etc: any dimen-

sion may be given as a finite product of distinct fundamental dimensions,

in the chosen order, raised to nonzero integral powers. Hence to check

equality of dimensions d
?
= d′, we can reduce d and d′ to normal forms

d = Mn0 · Ln1 ·Tn2 , d′ = Mn′0 · Ln′1 ·Tn′2 , and then straightforwardly check

equality of the exponents ni
?
= n′i, rather than applying the group axioms

directly.

The crucial step in making dimension checking part of type checking is

to allow abstract dimensions10: addition is not length-specific, but works in

one arbitrary dimension, which can stand for any dimension in particular.

The type system thus does algebra with unknown dimensions in G. In effect,

we add variables as generators: ensuring dimensional consistency amounts

to computing homomorphisms (if they exist) to instantiate the variables and

solve equations. E.g., if we need x2 · L = y ·T−1, we should take y = x2 · L ·T,

leaving x to vary freely. Recalling that a homomorphism is determined by

its action on generators, the above gives a homomorphism from G[x, y] to

G[x], where brackets show generator extensions. Not all equations have

solutions: there is no z such that z2 = L. If a solution exists, then there

is a solution through which all solutions factor — a fact which allows the

retention of most general types for a rich class of programs11.

3. Dependent type systems

Types in programming languages were invented for the benefit of machines,

e.g. to support memory layout, but their real payoff is for humans. In

typed languages from last century, types are used to detect and avoid basic

errors such as dividing an integer by a string. Types are characterised

by the values they contain, but their job is now to classify expressions as

meaningful or otherwise. A meaningful expression is expected to compute to

a value of its type, when its free variables are substituted by values of their

types. For example, matrix multiplication yields a value only when the input

sizes (which are numerical values) match appropriately. To do a proper job

classifying matrix multiplication as meaningful, our systems must thus let

types talk about values. Such type systems are called dependent type

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 4

4

systems12, as types can depend on values. They give us enough language

to be honest about meaningfulness as a relative notion. If our types of

matrices, Matrix(n,m), specifies their size, then matrix multiplication can

be given type

Matrix(n,m)×Matrix(m, k)→Matrix(n, k)

i.e. insisting that the input sizes are compatible, and determining the

output size. In Sec. 4, we will generalise the type of matrices from sizes to

dimensions.

This century, types make an active contribution by offering guidance

during the program construction process, not just criticism afterwards. E.g.,

only types Matrix(n, n) admit an identity matrix, and the type already de-

termines which one. Working interactively in a dependently typed language

such as Agda13, we can always see the sizes of the matrix we want, and

the components we have available. The space within which we search for

programs is correspondingly smaller and better structured.

Notation 3.1. We write a ∈ A for the assertion that that the expression

a is classified as meaningful in type A. We write Set for the type of small

typesa. In general, we write B ∈ A→Set for the assertion that B is a type

depending on a value of type A, i.e. given any a ∈ A, B(a) is a type.

With this notation in place, we can now introduce types for dependent

functions and dependent pairs — the workhorses of dependently typed

programming. Dependent function types give outputs meaning relative to

inputs, and dependent pair types reflect the way choices we are offered later

can depend on choices we have made earlier.

Definition 3.1. Given a type A and B ∈ A→Set, we write (x∈A)→B(x)

for the type of dependent functions, consisting of functions f with domain

A, such that f(a) ∈ B(a) for every a ∈ A. We may just write a stan-

dard function type, A→B, for (x∈A)→B when x does not occur in B.

Nested → groups to the right, i.e. we write (x∈A)→ (y∈B(x))→C(x, y)

for (x∈A)→ ((y∈B(x))→C(x, y)).

aThere cannot be a type of all types, for the same reason that there cannot be a set of

all sets: this would lead to a paradox. Most ordinary types, such as the type of natural
numbers, the type of lists with elements from a small type, the type of functions between

small types, etc, are small, but, crucially, Set itself is not a small type. Worried readers

are invited think of small types simply as sets of ordinary values.

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 5

5

Definition 3.2. Given a type A and B ∈ A→Set, we write (x∈A)×B(x)

for the type of dependent pairs (a, b), where a ∈ A and b ∈ B(a). We may

just write a standard Cartesian product, A×B, for (x∈A)×B when x does

not occur in B. × groups more tightly than →, i.e. we write A×B→C for

(A×B)→C.

We write N for the type of natural numbers, and 1 for the trivial type

with exactly one value. We will make use of two more so-called inductively

defined types: the type of lists, and the type of list index positions. We use

their description as an opportunity to give informal examples of how types

are introduced in dependent type theory.

Example 3.1. Let X ∈ Set. Then List(X) is also a type — of lists

with elements drawn from X. We always accept that the empty list ε

is a value in List(X). The type List(X) also admits values of the form

“something, somethings”, provided that “something” (the head of the list) is

one element of X, and the “somethings” (the tail of the list) constitute a

further List(X). That is, List(X) admits values as follows:

if x ∈ X and xs ∈ List(X)

ε ∈ List(X) then x, xs ∈ List(X)

By explaining how to make values, we have ipso facto explained how to

classify expressions. We may read x and xs in the above as schematic

variables which may stand for arbitrary program expressions, and thus

obtain a procedure for classifying expressions which compute to lists by

reading the rules from bottom to top. For example, we may check that

7, (2+9), 13, ε ∈ List(N) by checking that each of 7, 2+9 and 13 are meaning-

ful as natural numbers.

As an example of a dependent type, consider the following type of

evidence that a given element occurs in a given list.

Example 3.2. Let X ∈ Set, x ∈ X, and xs ∈ List(X). The type (x← xs)

admits values as follows:

if i ∈ (x← xs)

0 ∈ (x← x, xs) then i+ 1 ∈ (x← y, xs)

That is, the type (x← xs) is the type of index positions at which x occurs

in xs: 0 is the position of the head of a nonempty list; i+ 1 is the position

in a nonempty list corresponding to position i in its tail. We may check

that 1 ∈ (11← 7, (2+9), 13, ε) provided we are willing to do enough work to

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 6

6

identify 2+9 with 11. There may be many ways to classify a number (e.g.

1) as meaningful, in accordance with some purpose which we intend. We

use (x← xs) as a type which gives it additional meaning as an index into a

list: we know that this index is bounded by the length of the list, and also

know what value sits in the indexed position.

It is not unusual to use numbers as loop indices or as coordinates

of matrix entries, and quite often both. By refining our classification of

numbers, we can make that connection clear, and begin to characterise the

difference between we find at different coordinates.

4. Multidimensional Units of Measure

In this section, we put our expressive types to work by using them to keep

track of units of measure for matrices and matrix operations. We start by

summarising the necessary algebraic structure.

4.1. Monoids and semirings

Our work will rely heavily on algebraic properties of operations such as

addition and multiplication, not only for numbers, but also for dimensions,

physical quantities and matrices. Our starting point is the structure of a

monoid, being a way to crush (possibly empty) sequences of values into a

single value without regard to their grouping.

Definition 4.1. A monoid M = (A, · , 1) consists of

A ∈ Set with · ∈ A×A→A and 1 ∈ A.

We call A the carrier of M , and often write |M | = A. The multiplication ·
is required to be associative, and to absorb the identity element 1 on both

sides, i.e.

x·(y·z) = (x·y)·z x·1 = x 1·y = y

Examples of monoids include (N,+, 0), (N,×, 1), and (List(X),++, ε),

where ++ is list concatenation, and the trivial monoid whose carrier is

1. Common refinements of monoids include commutative monoids, i.e.

where x·y = y·x, and groups, where there is also a unary inverse −1 on the

carrier, such that x−1·x = 1, and abelian groups, which combine both.

Definition 4.2. A monoid homomorphism between monoids M and N

is a function h ∈ |M |→ |N | which preserves the monoid structure, i.e.

h(x·My) = h(x)·Nh(y) h(1M) = 1N

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 7

7

Examples of monoid homomorphisms include:

• exponentiation k− from (N,+, 0) to (N,×, 1), for a fixed k ∈ N;

• summation from (List(N),++, ε) to (N,+, 0);

• iterated product from (List(N),++, ε) to (N,×, 1);

• remappings [f(x) | x←] from (List(X),++, ε) to (List(Y),++, ε), for any

f ∈ X→Y , where [f(x) | x← xs] means the list of the values f(x) for

each x drawn in turn from xs.

Once we have additive and multiplicative monoid structure on the

same carrier, and they are compatible, we have the machinery for matrix

multiplication. This is the structure of a semiringb.

Definition 4.3. A semiring is a type R ∈ Set, such that: (i) there is a

commutative monoid (R,+, 0); (ii) there is a monoid (R, · , 1); (iii) x ·
and · z act on (R,+, 0) as monoid homomorphisms, i.e. multiplication

distributes:

x · 0 = 0 x · (y + z) = x · y + x · z 0 · z = z (x+ y) · z = x · z + y · z

As an example, our previously introduced monoids (N,+, 0) and (N,×, 1)

neatly combine to form a semiring. Physical quantities in a given dimension,

however, do not: if you add two lengths, you get a length, but if you multiply

two lengths, you get not a length but an area. We shall need to refine our

notion of semiring to account for the dependency of quantities on dimensions.

Before we can tackle dimensioned matrices, we need to treat dimensioned

scalars.

4.2. Dimensioned scalars

Using dependent types, dimensioned scalars can be described elegantly by

the structure of a semiring graded over the group of dimensions. Grading

is a way of inducing relative notions of structure. Let us have a simple

example — length-respecting concatenation of lists.

Example 4.1. It is standard practice in dependently typed programming

to refine lists List(X) ∈ Set with a length index: ListN(X,) ∈ N→Set.

ListN(X,n) is the type of lists of length n with elements from X, but it is

not a monoid with respect to concatenation: concatenating two lists of length

bTo obtain the better known notion of a ring, upgrade the additive structure of a semiring

to an abelian group.

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 8

8

5 makes a list of length 10. However, dependent pairs in (n∈N)× ListN(X,n)

recover the monoidal structure of lists; moreover with first projection acting

as a monoid homomorphism to (N,+, 0). For example,

(5, (a, b, c, d, e, ε))++(5, (f , g,h, i, j, ε)) = (10, (a, b, c, d, e, f , g,h, i, j, ε)).

In order to construct this monoid on (n∈N)× ListN(X,n), what structure is

needed on ListN(X,)? We need an “identity element” in ListN(X, 0), and a

way to “multiply” a ListN(X,n) and a ListN(X,m) to form a ListN(X,n+m).

Intuitively, ε and ++ fit the bill: i.e., there is a family of concatenators

++nm ∈ ListN(X,n)× ListN(X,m)→ ListN(X,n+m) which respect the or-

dinary monoid structure of +.

Definition 4.4. Let M = (|M |, · , 1) be a monoid. A graded monoid

over M is a triple (L, · , 1), where

L ∈ |M |→Set with ·ij ∈ L(i)×L(j)→L(i·j) and 1 ∈ L(1).

In truth, the multiplication really has a dependent function type

(i∈|M |)→ (j∈|M |)→L(i)×L(j)→L(i·j)

but in mathematical vernacular, we suppress i and j, and in computational

practice, a machine figures them out. The identity and associativity laws

are commensurate by the monoid laws of M , and they must hold:

x·i(jk)(y·jkz) = (x·ijy)·(ij)kz x·i11 = x 1·1jy = y

This is how we make the multiplication structure of physical quantities

respect the underlying monoid structure of dimensions. Let us now deploy

the same grading technique to the multiplicative structure of semirings:

for the additive structure, it is enough to have an ordinary commutative

monoid at every individual index.

Definition 4.5. Let M = (|M |, · , 1) be a monoid. A semiring graded

over M is a dependent type R ∈ |M |→Set, such that: (i) for every i ∈ |M |,
there is a commutative monoid, (R(i),+i, 0i); (ii) there is a graded monoid

(R, · , 1); (iii) x ·ij ∈ R(j)→ R(i·j) and ·ij x ∈ R(i)→ R(i·j) act as

monoid homomorphisms.

Note that if M is the trivial monoid M = 1, this reduces to the ordinary

notion of a non-graded semiring. We think of R(d) as the commutative

monoid of physical quantities with dimension d: we can add physical quan-

tities of the same dimension — if q, q′ ∈ R(d), then q +d q
′ is well typed,

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 9

9

and again q +d q
′ ∈ R(d) — and multiplying quantities also multiplies

their dimensions: if q ∈ R(d) and q′ ∈ R(d′) then q ·dd′ q′ ∈ R(d · d′).
Critically, we do not think of R(d) as a set of numbers; both “six foot six”

and “two metres” inhabit R(L). Numerical rendering of physical quantities

necessitates agreement of units!

Definition 4.6. A unit system for the graded semiring R ∈ |M |→Set

over M is a dependent function u ∈ (d∈|M |)→R(d), satisfying (i) u(1) = 1;

(ii) u(i · j) = u(i) ·ij u(j); and (iii) u(i) ·i1 x = x ·1i u(i) for every x ∈ R(1).

If M is a free abelian group M = G, most of such a function u is

determined by its action on generators — e.g., the SI gives units for all

our dimensions, taking u(M) = kg, u(L) = m and u(T) = s — but we

must still ensure that these are sent to invertible elements which commute

with dimensionless quantities. We observe, in this situation, that even

though R does not in general support division, we have u(d) ·dd−1 u(d−1) =

u(d · d−1) = u(1) = 1. Moreover, the quantities given as x ·1d u(d) constitute

a graded semiring in their own right: requirements (ii) and (iii), above,

give (x ·1i u(i)) ·ij (y ·1j u(j)) = (x ·11 y) ·1(i · j) u(i · j). Such a u thus allows

dimensionless numbers to encode physical quantities.

For the rest of the paper, we now assume that we are given a graded

semiring R ∈ G→Set over our group of physical dimensions.

4.3. Dimensioned matrices

What is an appropriate notion of dimensioned matrix? It is not obvious.

On one end of the scale, we could demand that every entry in the

matrix is of the same dimension, such as in Fig. 1(a), where we have elided

specific quantities for clarity. This is too restrictive in practice: for instance,

many elementary applications in physics collect together distance, speed,

acceleration, . . . , in one matrix — of systematically different dimensions.

On the other end of the scale, we could imagine to let every entry have

its own unrelated dimension, as in Fig. 1(d). However most such matrices

L L

L L

L L

(a) Uniform

L ·M−1 T ·M−1
L ·T−1 T ·T−1
L · L T · L

(b) Columns and rows

 T T ·M
L−1·T L−1·T ·M
M−1·T M−1·T ·M

(c) Γ-dimensioned

 L T

T−1 L3

M ·T L−1

(d) Unrelated

Fig. 1. Possible dimensioned matrices

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 10

10

are without metrological and algebraic meaning — they are mere arrays of

dimensioned quantities, rather than representations of linear transformations

between dimensioned spaces, as we would expect dimensioned matrices to

be. One way to see this is to notice that such dimensioned matrices with

unrelated dimensions are not closed under multiplication — see Thm. 4.2

below. Matrix multiplication should correspond to composition of linear

transformations, and yield the same closure property.

So instead, we consider more structured representations of such, as

in Fig. 1(b), where matrix dimensions are an outer product of dimension

vectors, i.e. each entry Mi,j has dimension ai · bj obtained by multiplying

the corresponding entries from a column vector ~a = a1, . . . , an and a row

vector ~b = b1, . . . , bm. Be warned that this representation of dimensions is

not unique: if M has dimensions given by ~a and ~b, it also has dimensions

given by c ·~a and c−1·~b for any group element c, since these perturbations

cancel. Such redundancy is bad news if we hope to automate the checking

of dimensions, e.g. by reducing it to type checking, since it means that any

algorithm must do non-trivial work in order to decide equality.

We remove this redundancy by factoring all dimensions through the

dimension b of the top left corner, recording the dimensions of the rest of the

first column as and row cs respectively. The dimensions of all other entries

(i, j) with i, j > 1 are given by multiplying the corresponding entries ai · b · cj ,
as in Fig. 1(c). It will yield some handy cancellation if all dimensions in as

are inverted — without loss of generality, as G is a group. This leads to our

definition of “Γ-dimensioned matrices”.

Definition 4.7. Let R ∈ G→Set be a graded semiring, as, cs ∈ List(G)

lists of elements of G, and b ∈ G a group element. We define the type of

Γ-dimensioned matrices (of the given dimensions) as follows:

Γ -Matrix(as, b, cs) := (a← 1, as)×(c← 1, cs)→R (a−1· b · c)

This is making use of the type of “positions” (x← xs) from Ex. 3.2. Hence

a Γ-dimensioned matrix is a function M such that

M(x, y) ∈ R (a−1· b · c) whenever x ∈ a← 1, as and y ∈ c← 1, cs.

Notation 4.1. Mnemonically, we draw the type of matrices showing each

parameter in the place it characterises, making a literal Γ, hence the name:[
b cs

as−1

]
:= Γ -Matrix(as, b, cs)

The −1 above as is part of the picture, as a reminder that the as get inverted.

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 11

11

Example 4.2. Assume a unit system based on SI units. The following

matrix M of physical quantities can be represented as an array of numbers

(by writing the value M(x, y) at numerical coordinates (x, y), as usual), and

given the following Γ-dimensioned type:(
5 m2 2 kg ·m2

1 m2/s 3 kg ·m2/s

)
∈
[
L2 M

T−1

]
If G is the trivial group G = 1, then Def. 4.7 reduces to the familiar

notion of (n+ 1)× (m+ 1)-sized matrices for natural numbers n and m, as

List(1) ∼= N.

Let us seek solace for the complexity of Γ-dimensioned matrices intro-

duced by eliminating the redundancy from columns-and-rows. We note

that for a list as ∈ List(A), a position in (a← as) is also a position in the

remapping (f(a) ← [f(x) | x← as]) for any function f ∈ A→B. We can

use remapping to normalise dimensions with respect to the corner:

Lemma 4.1. A columns-and-rows dimensioned matrix with dimensions

represented by non-empty lists a, as and b, bs is the same thing as a Γ-

dimensioned matrix[
a · b [b−1·x | x← bs]

[x−1· a | x← as]−1

]
A Γ-dimensioned matrix [

b cs

as−1

]
is the same as a columns-and-rows dimensioned matrix with dimensions

represented by the lists [x−1 | x← 1, as] and [b ·x | x← 1, bs].

Hence the concepts of columns-and-rows dimensioned matrices and Γ-

dimensioned matrices are interdefinable. Note that if we translate from

columns-and-rows to Γ-dimensioned and back again, we may not get back

the same lists of dimensions. In contrast, if we translate a Γ-dimensioned

matrix forth and back, we preserve dimensions, due to the fusion law

[f(y) | y ← [g(x) | x← as]] = [f(g(x)) | x← as]. This is not a coincidence,

or a feat of the translation — Γ-dimensions are unique:

Theorem 4.1. Assume that quantities have a unique dimension, i.e. if

r ∈ R(d) and r ∈ R(d′) then d = d′. Then Γ-dimensioned matrices also have

unique Γ-dimensions, i.e. if

M ∈
[

b cs

as−1

]
and M ∈

[
b′ cs ′

as ′−1

]

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 12

12

then as = as ′, b = b′ and cs = cs ′.

One might worry that the class of Γ-dimensioned matrices is too small

to be useful, but as the following theorem shows, it is actually as good a

class of dimensioned matrices as we can hope for, if we believe that matrix

multiplication is a fundamental operation (as we do).

Theorem 4.2. The collection of Γ-dimensioned matrices is the largest class

of dimensioned matrices closed under multiplication.

The proof exploits the fact that multiplication computes a matrix of inner

products whose summands must have uniform dimension.

4.4. Dimension-aware matrix algebra

Many well known operations on matrices can be given Γ-dimensioned types.

Addition lifts straightforwardly, since it acts componentwise:

Theorem 4.3. Matrix addition and the zero matrix have types

+ ∈
[

b cs

as−1

]
×
[

b cs

as−1

]
→
[

b cs

as−1

]
0 ∈

[
b cs

as−1

]
for any as, cs ∈ List(G) and b ∈ G.

In contrast, multiplication, •, is defined only when the matrices involved

are compatible, in size, as we are used to, but here also in dimensions:

Theorem 4.4. Matrix multiplication and the identity matrix have types

• ∈
[

b cs

as−1

]
×
[
d es

cs−1

]
→
[
b · d es

as−1

]
1 ∈

[
1 as

as−1

]
for any as, cs, es ∈ List(G) and b, d ∈ G.

Each element of the output is given for fixed positions in (a ← 1, as)

and (e ← 1, es), but computed by an inner product ranging over all

positions in (c ← 1, cs). As we intend the notation to suggest, the row

cs cancels the column cs−1, yielding uniform dimension for all summands:

(a−1· b · c) ·(c−1· d · e) = a−1·(b ·(c · c−1) · d) · e = a−1·(b · d) · e as required.

Note that for A •B to be well typed, we require that the row of ‘column

dimensions’ for A match the column of ‘row dimensions’ for B — this

generalises the usual requirement that the number of columns of A should

match the number of rows of B, and indeed, if G is the trivial group G = 1,

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 13

13

then the former reduces exactly to the latter. Similarly the identity matrix

is always a ‘square’ matrix in the sense that its ‘row dimensions’ match its

‘column dimensions’. This is often the appropriate notion of squareness in a

dimensioned setting — many operations on square matrices do not make

dimensioned sense on arbitrary matrices of square size, but do for square

matrices in this stronger sense. A good example is the trace of a square

matrix, i.e. the sum of the diagonal elements:

Theorem 4.5. The trace operator has type

tr ∈
[

b as

as−1

]
→R(b)

for any as ∈ List(G) and b ∈ G.

However, interestingly, the determinant of a Γ-dimensioned matrix makes

sense also for matrices of square size. This can be seen by considering the

formula for the determinant as a sum over all permutations

det(M) =
∑
π∈Sn

sgn(π) ·
∏
x<n

M(x, π(x))

and noticing that each summand will always have the same dimension —

that of the product of the main diagonal.

Theorem 4.6. The determinant operator has type

det ∈
[

b cs

as−1

]
→R

(
(
∏
a←as

a)−1· bn+1 ·(
∏
c←cs

c)
)

for any b ∈ G, and as, cs ∈ List(G) of the same length |as| = |cs| = n.

4.5. Elementary row operations

The important method of Gaussian elimination makes sense for Γ-

dimensioned matrices, and so can be used to solve systems of dimensioned

equations, compute dimensioned inverses, etc. This can be seen by finding

dimensioned types for the elementary row operations used by the method.

The proof uses Lem. 4.1 to translate back and forth to the more symmetric

columns-and-rows dimensioned matrices. We will explain how the operations

use their arguments below:

Theorem 4.7. The elementary row operations have types thus:

swapFirst ∈ (p∈d← as)→
[

b cs

as−1

]
→
[

d−1· b cs

[d−1·x | x← as[p7→1]]−1

]

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 14

14

multFirst ∈ R(d)→
[

b cs

as−1

]
→
[

d · b cs

[d ·x | x← as]−1

]

addMult ∈ (d← 1, as)→(e← 1, as)→R(d−1· e)→
[

b cs

as−1

]
→
[

b cs

as−1

]

The operation swapFirst takes a row to swap with as a position p for

dimension d in as, and a matrix, returning a matrix with the dimensions

also suitably swapped; the output row dimensions are given by swapping a 1

in place of the d, indicated by as[p 7→1], then renormalising with respect to

the d−1· b which is now in the top left corner. The operation multFirst is given

a scalar and a matrix, and returns the matrix where the first row has been

multiplied by the scalar. Of course, by combining swapFirst and multFirst,

we can multiply any row by a scalar. Finally the operation addMult is given

a source and a target position as indices of two group elements d and e into

the list as, as well as a scalar to multiply by, of dimension d−1· e. This is a

good example of a refined type being able to help with interactive program

construction: the dimension of the multiplier already suggests a specific

relationship between the source and target rows.

5. Conclusions and Future Work

Following Hart8, we have shown how to use dependent types to extend type

systems for units of measure from scalars to matrices. The key definition is

of Γ-dimensioned matrices, recording the dimensions of matrix entries in

a maximally liberal and unique way. We have also shown that many well

known operations on matrices can be given Γ-dimension-respecting types.

Our present technology, a general-purpose dependently typed language,

obliges us to write more explicit proofs (elided here) of the list and group

identities we rely upon to make types match. To pay for what we propose

to get, we are developing a bespoke type checker with additional domain

knowledge14 about the equational theory of lists and abelian groups. Even

to reach ‘Base Camp Hart’, we type theorists will have to raise our game.

Acknowledgments

We would like to thank Alistair Forbes, Keith Lines, Artem Shinkarov, and

Ian Smith for interesting discussions related to this work, and the anonymous

referee for comments and suggested improvements to the text. This work is

June 14, 2021 22:58 WSPC Proceedings - 9in x 6in dimensions˙full page 15

15

funded by the UK National Physical Laboratory Measurement Fellowship

project Dependent types for trustworthy tools.

References

1. A. G. Stephenson, L. S. LaPiana, D. R. Mulville, P. J. Rutledge, F. H.

Bauer, D. Folta, G. A. Dukeman, R. Sackheim and P. Norvig, The Mars

Climate Orbiter Mishap Investigation Board Phase I Report, tech. rep.,

NASA (1999).

2. O. Bennich-Björkman and S. McKeever, The next 700 unit of measure-

ment checkers, in SLE ’18 , (ACM, 2018).

3. A. Kennedy, Programming languages and dimensions, PhD thesis,

University of Cambridge, (United Kingdom, 1995).

4. M. C. Schabel and S. Watanabe, Boost C++ libraries, chapter 43

(Boost.Units 1.1.0) https://www.boost.org/doc/libs/1_74_0/doc/

html/boost_units.html, (2010).

5. J.-M. Dautelle, W. Keil and O. Santana, JSR 385: Units of measurement

https://unitsofmeasurement.github.io/, (2019).

6. T. Muranushi and R. Eisenberg, Experience report: Type-checking

polymorphic units for astrophysics research in Haskell, in Haskell ’14 ,

(ACM, 2014).

7. Pint: makes units easy https://pint.readthedocs.io/, (2020).

8. G. W. Hart, Multidimensional Analysis (Springer, 1995).

9. P. Griffioen, A unit-aware matrix language and its application in control

and auditing, PhD thesis, University of Amsterdam, (the Netherlands,

2019).

10. M. Wand and P. O’Keefe, Automatic dimensional inference, in Com-

putational Logic: Essays in Honor of Alan Robinson, eds. J.-L. Lassez

and G. Plotkin (MIT Press, 1991) pp. 479–486.

11. A. Gundry, A typechecker plugin for units of measure: Domain-specific

constraint solving in GHC Haskell, in Haskell ’15 , (ACM, 2015).

12. A. Bove and P. Dybjer, Dependent Types at Work, in LerNet ALFA

Summer School 2008 Revised Tutorial Lectures, eds. A. Bove, L. S.

Barbosa, A. Pardo and J. S. Pinto (Springer, 2009), pp. 57–99.

13. U. Norell, Towards a practical programming language based on depen-

dent type theory, PhD thesis, Chalmers University, (Sweden, 2007).

14. G. Allais, C. McBride and P. Boutillier, New equations for neutral terms:

a sound and complete decision procedure, formalized, in DTP@ICFP

2013 , ed. S. Weirich (ACM, 2013).

https://www.boost.org/doc/libs/1_74_0/doc/html/boost_units.html
https://www.boost.org/doc/libs/1_74_0/doc/html/boost_units.html
https://unitsofmeasurement.github.io/
https://pint.readthedocs.io/

