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Abstract. We present a principle for introducing new types in type
theory which generalises strictly positive indexed inductive data types. In
this new principle a set A is defined inductively simultaneously with an
A-indexed set B, which is also defined inductively. Compared to indexed
inductive definitions, the novelty is that the index set A is generated
inductively simultaneously with B. In other words, we mutually define
two inductive sets, of which one depends on the other.

Instances of this principle have previously been used in order to formalise
type theory inside type theory. However the consistency of the framework
used (the theorem prover Agda) is not so clear, as it allows the definition
of a universe containing a code for itself. We give an axiomatisation of the
new principle in such a way that the resulting type theory is consistent,
which we prove by constructing a set-theoretic model.

1 Introduction

Martin-Löf Type Theory [12] is a foundational framework for constructive math-
ematics, where induction plays a major part in the construction of sets. Martin-
Löf’s formulation [12] includes inductive definitions of for example Cartesian
products, disjoint unions, the identity set, finite sets, the natural numbers, well-
orderings and lists. External schemas for general inductive sets and inductive
families have been given by Backhouse et. al. [2] and Dybjer [6] respectively.
Indexed inductive definitions have also been used for generic programming in
dependent type theory [3, 13].

Another induction principle is induction-recursion, where a set U is con-
structed inductively simultaneously with a recursively defined function T ∶ U →D
for some possibly large type D. The constructor for U may depend negatively
on T applied to elements of U . The main example is Martin-Löf’s universe à la
Tarski [15]. Dybjer [8] gave a schema for such inductive-recursive definitions, and
this has been internalised by Dybjer and Setzer [9–11].

In this article, we present another induction principle, which we, in reference
to induction-recursion, call induction-induction. A set A is inductively defined
simultaneously with an A-indexed set B, which is also inductively defined, and
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the introduction rules for A may also refer to B. So we have formation rules
A ∶ Set, B ∶ A→ Set and typical introduction rules might take the form

a ∶ A b ∶ B(a) . . .

introA(a, b, . . .) ∶ A

a0 ∶ A b ∶ B(a0) a1 ∶ A . . .

introB(a0, b, a1, . . .) ∶ B(a1)

This is not a simple mutual inductive definition of two sets, as B is indexed
by A. It is not an ordinary inductive family, as A may refer to B. Finally, it
is not an instance of induction-recursion, as B is constructed inductively, not
recursively.

Let us consider a first example, which will serve as a running example to
illustrate the formal rules. We simultaneously define a set of platforms together
with buildings constructed on these platforms. The ground is a platform, and if
we have a building, we can always construct a new platform from it by building an
extension. We can always build a building on top of any platform, and if we have
an extension, we can also construct a building hanging from it. See the extended
version [14] of this article for an illustration.) This gives rise to the following
inductive-inductive definition of Platform ∶ Set, Building ∶ Platform→ Set (where
p ∶ Platform means that p is a platform and b ∶ Building(p) means that b is a
building constructed on the platform p)1 with constructors

ground ∶ Platform ,

extension ∶ ((p ∶ Platform) ×Building(p))→ Platform ,

onTop ∶ (p ∶ Platform)→ Building(p) ,

hangingUnder ∶ ((p ∶ Platform) × (b ∶ Building(p)))→ Building(extension(⟨p, b⟩)).

Note that the index of the codomain of hangingUnder is extension(⟨p, b⟩), i.e.
hangingUnder(⟨p, b⟩) ∶ Building(extension(⟨p, b⟩)). In other words, it is not pos-
sible to have a building hanging under the ground.

Inductive-inductive definitions have been used by Dybjer [7], Danielsson [5]
and Chapman [4] to internalise the syntax and semantics of type theory. Slightly
simplified, they define a set Ctxt of contexts, a family Ty ∶ Ctxt→ Set of types
in a given context, and a family Term ∶ (Γ ∶ Ctxt)→ Ty(Γ )→ Set of terms of a
given type. Let us for simplicity only consider contexts and types. The set Ctxt
of contexts has two constructors

ε ∶ Ctxt ,

cons ∶ ((Γ ∶ Ctxt) ×Ty(Γ ))→ Ctxt ,

corresponding to the empty context and extending a context Γ with a new type.
In our simplified setting, Ty ∶ Ctxt→ Set has the following constructors

’set’ ∶ (Γ ∶ Ctxt)→ Ty(Γ ) ,

Π ∶ ((Γ ∶ Ctxt) × (A ∶ Ty(Γ )) ×Ty(cons(⟨Γ,A⟩)))→ Ty(Γ ) .

1 The collection of small types in Martin-Löf type theory is called Set for historic
reasons, whereas Type is reserved for the collection of large types. The judgement
Building ∶ Platform → Set means that for every p ∶ Platform, Building(p) ∶ Set. The
type theoretic notation will be further explained in Section 2.



The first constructor states that ’set’ is a type in any context. The second
constructor Π is the constructor for the Π-type: If we have a type A in a context
Γ , and another type B in Γ extended by A (corresponding to abstracting a
variable of type A), then Π(A,B) is also a type in Γ .

Note how the constructor cons for Ctxt has an argument of type Ty(Γ ),
even though Ty is indexed by Ctxt. It is also worth noting that Π has an
argument of type Ty(cons(⟨Γ,A⟩)), i.e. we are using the constructor for Ctxt
in the index of Ty. In general, we could of course imagine an argument of type
Ty(cons(⟨cons(⟨Γ,A⟩),A′⟩)) etc.

Both Danielsson [5] and Chapman [4] have used the proof assistant Agda [17]
as a framework for their formalisation. Agda supports inductive-inductive (and
inductive-recursive) definitions via the mutual keyword. However, the theory
behind Agda is unclear, especially in relation to mutual definitions. For example,
Agda allows the definition of a universe U à la Tarski, with a code u ∶ U for
itself, i.e. T (u) = U . This does not necessarily mean that Agda is inconsistent
by Girard’s paradox, as, if we also demand closure under Π or Σ, the positivity
checker rejects the code. However the consistency of Agda is by no means clear.

Nevertheless, Agda is an excellent tool for trying out ideas. We have formalised
our theory in Agda, and this formalisation can be found on the authors’ home
pages, together with an extended version of this article [14], containing proofs
and details that have been omitted due to space constraints.

Acknowledgements We wish to thank Phillip James and the anonoymous
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2 Type Theoretic Preliminaries

We work in a type theory with at least two universes Set and Type, with Set ∶ Type
and if A ∶ Set then A ∶ Type. Both Set and Type are closed under dependent
function types, written (x ∶ A) → B (sometimes denoted (Πx ∶ A)B), where B
is a set or type depending on x ∶ A. Abstraction is written as λx ∶ A.e, where
e ∶ B depending on x ∶ A, and application as f(x). Repeated abstraction and
application are written as λx1 ∶ A1 . . . xk ∶ Ak.e and f(x1, . . . , xk). If the type of
x can be inferred, we simply write λx.e as an abbreviation. Furthermore, both
Set and Type are closed under dependent sums, written (x ∶ A) ×B (sometimes
denoted (Σx ∶ A)B), where B is a set or type depending on x ∶ A, with pairs ⟨a, b⟩,
where a ∶ A and b ∶ B[x ∶= a]. We also have β- and η-rules for both dependent
function types and sums.

We need an empty type 0 ∶ Set, with elimination !A ∶ (x ∶ 0)→ A for every
A ∶ 0→ Set. We need a unit type 1 ∶ Set, with unique element ⋆ ∶ 1. We include
an η-rule stating that if x ∶ 1, then x = ⋆ ∶ 1. Moreover, we include a two element
set 2 ∶ Set, with elements tt ∶ 2, ff ∶ 2 and elimination constant if ⋅ then ⋅ else ⋅ ∶
(a ∶ 2)→ A(tt)→ A(ff)→ A(a) where A(i) ∶ Type for i ∶ 2.

With if ⋅ then ⋅ else ⋅ and dependent products, we can now define the disjoint
union of two sets A +B ∶= (x ∶ 2) × (if x then A else B) with constructors inl =



λa ∶ A.⟨tt, a⟩ and inr = λb ∶ B.⟨ff, b⟩, and prove the usual formation, introduction,
elimination and equality rules. We write A0+A1+. . .+An for A0+(A1+(. . .+An)⋯)
and ink(a) for the kth injection inl(inrk(a)) (with special case inn(a) = inrn(a)).

Using (the derived) elimination rules for +, we can, for A,B ∶ Set, C ∶ A+B →
Type and f ∶ (a ∶ A) → C(inl(a)), g ∶ (b ∶ B) → C(inr(b)), define the case
distinction f ⊔ g ∶ (c ∶ A +B)→ C(c) with equality rules

(f ⊔ g)(inl(a)) = f(a) ,

(f ⊔ g)(inr(b)) = g(b) .

We will use the same notation even when C does not depend on c ∶ A+B, and we
will write f ∥ g ∶ A+B → C+D, where f ∶ A→ C, g ∶ B →D, for (inl○f)⊔(inr○g).

Intensional type theory in Martin-Löf’s logical framework extended with
dependent products and 0, 1 and 2 has all the features we need. Thus, our
development could, if one so wishes, be seen as an extension of the logical
framework.

3 From Inductive to Inductive-inductive Definitions

Let us first, before we move on to inductive-inductive definitions, informally
consider how to formalise a simultaneous (generalised) inductive definition of
two sets A and B, given by constructors

introA ∶ ΦA(A,B)→ A introB ∶ ΦB(A,B)→ B

where ΦA and ΦB are strictly positive in the following sense:

– The constant Φ(A,B) = 1 is strictly positive. It corresponds to an introduction
rule with no arguments (or more precisely, the trivial argument x ∶ 1).

– If K is a set and Ψx is strictly positive, depending on x ∶K, then Φ(A,B) =
(x ∶K)×Ψx(A,B), corresponding to the addition of a non-inductive premise,
is strictly positive. So introA has one non-inductive argument x ∶K, followed
by the arguments given by Ψx(A,B).

– If K is a set and Ψ is strictly positive, then Φ(A,B) = (K → A) × Ψ(A,B) is
strictly positive. This corresponds to the addition of a premise inductive in
A, where K corresponds to the hypothesis of this premise in a generalised
inductive definition. So introA has one inductive argument f ∶K → A, followed
by the arguments given by Ψ(A,B).

– Likewise, if K is a set and Ψ is strictly positive, then Φ(A,B) = (K →
B) × Ψ(A,B) is strictly positive. This is similar to the previous case.

In an inductive-inductive definition, B is indexed by A, so the constructor
for B is replaced by

introB ∶ (a ∶ ΦB(A,B))→ B(iA,B(a))

for some index iA,B(a) ∶ A which might depend on a ∶ ΦB(A,B). Furthermore,
we must modify the inductive case for B to specify an index as well. This index
can (and usually does) depend on earlier inductive arguments, so that the new
inductive cases become



– If K is a set, and Ψf is strictly positive, depending2 on f ∶ K → A only in
indices for B, then Φ(A,B) = (f ∶K → A) × Ψf(A,B) is strictly positive.

– If K is a set, iA,B ∶K → A is a function and Ψf is strictly positive, depending
on f ∶ (x ∶ K) → B(iA,B(x)) only in indices for B, then Φ(A,B) = (f ∶ ((x ∶
K)→ B(iA,B(x)))) × Ψf(A,B) is strictly positive.

In what way can the index depend on f? Before we know the constructor for
A, we do not know any functions with codomain A, so the index can only depend
directly on f (e.g. B(f(x))). When we define the constructor for B, the situation
is similar, but now we know one function into A, namely introA ∶ ΦA(A,B)→ A,
so that the index could be e.g. introA(f(x), b). (Our approach could also be
straightforwardly extended to allow several constructors for A, where later
constructors make use of earlier ones.)

4 An Axiomatisation

We proceed as in Dybjer and Setzer [9] and introduce a datatype of codes for
constructors. In other words, we define a type SP (for strictly positive) whose
elements represent the inductively defined sets, together with a way to construct
the real sets from the representing codes. However, as we have two sets A and B
with different roles, we need two types SPA and SPB of codes.

What do we need to know in order to reconstruct the inductively defined sets?
A moment’s thought shows that all we need is the domain of the constructors,
and in the case of B, we also need the index of the codomain of the constructor.
From this, we can write down the introduction rules, and the elimination rules
should be determined by these (see e.g. [6]). Thus, the codes in SPA and SPB will
be codes for the domain of the constructors, and we will have functions ArgA,
ArgB that map the code to the domain it represents. For B, there will also be a
function IndexB that gives the index (in A) of the codomain of the constructor.

We will have special codes A-ind, B-ind for arguments that are inductive in A
and B respectively. In the case of B-ind, we also need to specify an index, which
might depend on earlier arguments. For instance, the index p of the type of the
second argument for the extension constructor

extension ∶ ((p ∶ Platform) ×Building(p))→ Platform

depends on the first argument. How can we specify this index in the code? We
cannot make use of the sets A and B themselves, since they are to be defined, but
we can refer to their existence. We will introduce parameters Aref, Bref that get
updated during the construction of the code. Aref determines the elements of A
that we can refer to, and Bref determines the elements b of B, together with the
index a such that b ∶ B(a). At the beginning, we cannot refer to any arguments,
and so Aref = Bref = 0. For example, after having written down the first argument
p ∶ Platform, Aref would be extended to include also an element representing p,
which we use when writing down the type of the second argument, Building(p).

2 The somewhat vague and informal phrase “depending on f only in indices for B”
will be given an exact meaning in the formalisation in the next section.



4.1 SPA and ArgA

The above discussion leads us to the following formation rule for SPA:

Aref ∶ Set Bref ∶ Set

SPA(Aref,Bref) ∶ Type

Aref and Bref can be any sets. The codes for inductive-inductive definitions
will however be elements from SP′

A ∶= SPA(0,0), i.e. codes that do not refer to
any elements to start with.

The introduction rules for SPA reflect the rules for strict positivity in Section 3.
The rules are as follows (we suppress the global premise Aref,Bref ∶ Set):

nilA ∶ SPA(Aref,Bref)

K ∶ Set γ ∶K → SPA(Aref,Bref)

nonind(K,γ) ∶ SPA(Aref,Bref)

K ∶ Set γ ∶ SPA(Aref +K,Bref)

A-ind(K,γ) ∶ SPA(Aref,Bref)

K ∶ Set hindex ∶K → Aref γ ∶ SPA(Aref,Bref +K)

B-ind(K,hindex, γ) ∶ SPA(Aref,Bref)

The code nilA represents a trivial constructor (the base case). The code
nonind(K,γ) is meant to represent a noninductive argument x ∶K, with the rest
of the arguments given by γ(x). The code A-ind(K,γ) is meant to represent a
(generalised) inductive argument of type K → A, with the rest of the arguments
given by γ. Finally, the code B-ind(K,hindex, γ) represents an inductive argument
of type (x ∶ K) → B(i(x)), where the index i(x) is determined by hindex, and
the rest of the arguments are given by γ. For instance, a constructor

c ∶ ((x ∶ 2) × (N→ A))→ A

has the code γc = nonind(2, λx.A-ind(N,nilA)). Note how 2 and N appear in the
code. We will see an example of the slightly more complicated constructor B-ind
later.

We will now define ArgA, which maps a code to the domain of the constructor
it represents. ArgA will need to take arbitrary A ∶ Set and B ∶ A → Set as
parameters to use as A and B in the inductive arguments, since we need ArgA
to define the A and B we want. We will then have axioms stating that for every
code γ ∶ SP′

A, there are sets Aγ , Bγ closed under ArgA, i.e. there is a constructor
introA ∶ ArgA(γ,Aγ ,Bγ)→ Aγ . ArgA has formation rule

Aref,Bref ∶ Set
γ ∶ SPA(Aref,Bref)

A ∶ Set
B ∶ A→ Set

repA ∶ Aref → A
repindex ∶ Bref → A

repB ∶ (x ∶ Bref)→ B(repindex(x))

ArgA(Aref,Bref, γ,A,B, repA, repindex, repB) ∶ Set

The function repA translates elements in Aref into the real elements they represent
in A. Elements in Bref represent elements b from B, but also elements from A,
as we also need to store the index a such that b ∶ B(a). This index is given by
repindex, and repB gives the real element in B(repindex(y)) an element y ∶ Bref

represents.



We are actually only interested in ArgA for codes γ ∶ SP′
A for inductive-

inductive definitions (i.e. with Aref = Bref = 0), but we need to consider arbitrary
Aref, Bref for the intermediate codes. For γ ∶ SP′

A, we can define a simplified
version Arg′A ∶ SP′

A → (A ∶ Set) → (B ∶ A → Set) → Set by Arg′A(γ,A,B) ∶=
ArgA(0,0, γ,A,B, !A, !A, !B○!A). (Recall that !X ∶ (x ∶ 0) → X is the function
given by ex falso quodlibet.)

The definition of ArgA also follows the rules for strict positivity in Section 3.
We will, for readability, write “ ” for arguments which are simply passed on in
the recursive call.

The code nilA represents the constructor with no argument (i.e. a trivial
argument of type 1):

ArgA(Aref,Bref,nilA,A,B, repA, repindex, repB) = 1

The code nonind(K,γ) represents one non-inductive argument k ∶ K, with the
rest of the arguments given by the code γ (depending on k ∶K):

ArgA(Aref,Bref,nonind(K,γ),A,B, repA, repindex, repB) =

(k ∶K) ×ArgA( , , γ(k), , , , , )

The code A-ind(K,γ) represents one generalised inductive argument j ∶K → A,
with the rest of the arguments given by the code γ. In the following arguments,
Aref has now been updated to Aref+K, where elements in the old Aref are mapped
to A by the old repA, and elements in K are mapped to A by j. In effect, this
means that we can refer to j(k) for k ∶K in the following arguments.

ArgA(Aref,Bref,A-ind(K,γ),A,B, repA, repindex, repB) =

(j ∶K → A) ×ArgA(Aref +K, , γ, , , repA ⊔ j, , )

Finally, the code B-ind(K,hindex, γ) represents one generalised inductive argu-
ment j ∶ (x ∶K)→ B((repA ○hindex)(x)), where repA ○hindex picks out the index
of the type of j(x). This time, we can refer to more elements in B afterwards,
namely those given by j (and indices given by repA ○ hindex):

ArgA(Aref,Bref,B-ind(K,hindex, γ),A,B, repA, repindex, repB) =

(j ∶ (k ∶K)→ B((repA ○ hindex)(k)))×

ArgA( ,Bref +K,γ, , , , repindex ⊔ (repA ○ hindex), repB ⊔ j)

Let us take a look at the constructor

extension ∶ ((p ∶ Platform) ×Building(p))→ Platform

again. It would have the code γext = A-ind(1,B-ind(1, λ ⋆ .p̂,nilA)) ∶ SP′
A where

p̂ = inr(⋆) is the element in Aref = 0 + 1 representing the element introduced by
A-ind. We have

Arg′A(γext,Platform,Building) = (p ∶ 1→ Platform) × (1→ Building(p(⋆))) × 1

which is isomorphic to the domain of extension thanks to the η-rules for 1 (i.e.
X ≅ 1→X and X ≅X × 1).



4.2 Towards SPB

If we did not want to use constructors for A as indices for B, like for example
Building(extension(⟨p, b⟩)), we could construct SPB in more or less the same
way as SPA (this corresponds to choosing k = 0 below). However, in general
we do want to use constructors as indices, hence we have some more work to
do. What do we need to know for such a constructor index? We need to know
that we want to use a constructor, but that can be encoded in the code. We
also need a way to specify the arguments to the constructor, i.e. we need to
represent an element of Arg′A(γ,A,B)! If we want to use nested constructors (e.g.
extension(⟨extension(⟨p, b⟩), b′⟩)), we also need to be able to represent elements
in Arg′A(γ,Arg′A(γ,A,B0),B1) etc.

The idea is to represent elements in Arg′A(γ,A,B) by corresponding elements
in “Arg′A(γ,Aref,Bref)”. However, we must first reconstruct the structure of Aref,
Bref as a family, i.e. we will construct Aref ∶ Set, Bref ∶ Aref → Set, together
with functions repA ∶ Aref → A and repB ∶ (x ∶ Aref) → Bref(x) → B(repA(x)).
Then, we will show that repA and repB can be lifted to a map lift′(repA, repB) ∶
Arg′A(γ,Aref,Bref) → Arg′A(γ,A,B), so that elements in Arg′A(γ,Aref,Bref) in-
deed can represent elements in Arg′A(γ,A,B). The process can then be iterated
to represent elements in Arg′A(γ,Arg′A(γ,A,B0),B1) etc.

Aref should consist of representatives a for elements a in A, and Bref(a) should
consist of representatives for elements in B(a). The representative a could either
be from Aref (with a = repA(a)), in which case we do not know any elements in
B(a), or from Bref (with a = repindex(a)), in which case we know a single element
in B(a), namely repB(a). Therefore, for Aref,Bref ∶ Set, we define

Aref ∶= Aref +Bref , Bref ∶= (λx.0) ⊔ (λx.1) ,

i.e. Bref(inl(a)) = 0 and Bref(inr(b)) = 1.
Mapping representatives in Aref to the elements they represent in A is now

easy: we map inl(a) ∶ Aref to repA(a) and inr(a) to repindex(a). For Bref, we
want to map representatives in Bref(a) to the elements they represent in B(a).
However, we only have to consider Bref(inr(x)) = 1, as there are no elements
in Bref(inl(x)) = 0. We map ⋆ ∶ Bref(inr(a)) to repB(a). To sum up, we can
define maps repA ∶ Aref → A, repB ∶ (x ∶ Aref) → Bref(x) → B(repA(x)) by
repA ∶= repA ⊔ repindex and repB ∶= (λx.!B○!A) ⊔ (λx ⋆ .repB(x)).

We now want to lift these maps to a map repA,1 ∶ Arg′A(γ,Aref,Bref) →
Arg′A(γ,A,B). This is made possible by the following more general result for
arbitrary families A, B, A∗, B∗ with respective representing functions repA, rep∗A
etc. Assume we have maps g ∶ A → A∗, g′ ∶ (x ∶ A) → B(x) → B∗(g(x)) that
respect the translations repA and rep∗A, i.e. we have a proof p that g(repA(x)) =
rep∗A(x) for all x ∶ Aref. Then we can lift g to a map

lift(g, g′, p) ∶ ArgA(Aref,Bref, γ,A,B, repA, repindex, repB)→

ArgA(Aref,Bref, γ,A
∗,B∗, rep∗A, rep∗index, rep∗B) .

This can be done component-wise by using the translation functions g, g′,
and using the proof that g(repA(x)) = rep∗A(x) to go from B∗(g(repA(x)))



to B∗(rep∗A(x)) in the B-ind case. (It might be worth pointing out that this also
works in intensional type theory, as we only need that g ○ repA and rep∗A are
pointwise equal.) We will omit the definition here for lack of space (see [14] for
details). Instead, recall the code γext for the constructor

extension ∶ ((p ∶ Platform) ×Building(p))→ Platform .

An element from Arg′A(γext,Platform,Building) is of the form3 z = ⟨p, b,⋆⟩ where
p ∶ Platform and b ∶ Building(p). Given functions g ∶ Platform → A∗ and g′ ∶ (x ∶
Platform) → Building(x) → B∗(g(x)) for some other A∗, B∗, then z would be
mapped to

lift(g, g′, triv)(z) = ⟨g(p), g′(p, b),⋆⟩ ∶ Arg′A(γext,A
∗,B∗) .

Here, triv is a trivial proof that g(repA(x)) = rep∗A(x) for every x ∶ 0. This will
be a valid proof for every γ ∶ SP′

A, so once again we define a simplified version

lift′(g, g′) ∶ Arg′A(γ,A,B)→ Arg′A(γ,A∗,B∗)

by lift′(g, g′) ∶= lift(g, g′, triv).
In our specific case, let for γ ∶ SP′

A, Aref,Bref ∶ Set and repA ∶ Aref → A,
repindex ∶ Bref → A, repB ∶ (b ∶ Bref)→ B(repindex(b))

argA(γ,Aref,Bref) ∶= Arg′A(γ,Aref,Bref) ,

lift(repA, repindex, repB) ∶= lift′(repA, repB) ∶ argA(γ,Aref,Bref)→ Arg′A(γ,A,B) .

We can now represent elements in Arg′A(γ,A,B) by elements in argA(γ,Aref,Bref)
via repA,1 ∶= lift(repA, repindex, repB). For example, consider γext once again. Sup-
pose that we want to specify an element of Arg′A(γext,Platform,Building), i.e. an
argument to the extension constructor, and we have Aref = Bref = 0+1. Aref then
consists of two elements, namely p̂ = inl(inr(⋆)) and p̂b = inr(inr(⋆)). We have

that Bref(p̂) = 0 and Bref(p̂b) = 1. In other words, there is only one element ⟨̂pb⟩ =

⟨p̂b,⋆,⋆⟩ of Arg′A(γext,Aref,Bref), and repA,1(⟨̂pb⟩) = ⟨repindex(p̂b), repB(p̂b),⋆⟩ =

⟨p, b,⋆⟩ where repindex(p̂b) = p ∶ Platform, repB(p̂b) = b ∶ Building(p).
Let us now generalise this to multiple nestings of constructors. Given a

sequence B⃗ref(n) = Bref, 0,Bref, 1, . . . ,Bref, n − 1 of sets, we iterate argA by defining

arg0A(γ,Aref, B⃗ref(0)) = Aref ,

argn+1A (γ,Aref, B⃗ref(n+1)) = argA(γ,
n

+
i=0

argiA(γ,Aref, B⃗ref(i)),Bref, n) .

argkA should represent k nested constructors. The corresponding iteration of Arg′A
justifying this, is

Arg0A(γ,A, B⃗(0)) = A ,

Argn+1A (γ,A, B⃗(n+1)) = Arg′A(γ,
n

+
i=0

ArgiA(γ,A, B⃗(i)),
n

⊔
i=0

Bi) ,

3 We identify 1→X and X for the sake of readability. If not, p would be λ ⋆ .p and so
on.



where B⃗(n) is a sequence B0,B1, . . . ,Bn−1 of families Bi ∶ ArgiA(γA,A, B⃗(i−1))→
Set.

Now assume that we have a sequence B⃗ref(n) of sets and a sequence B⃗(n)
of families of sets as above. If we now in addition to repA ∶ Aref → A, also
have functions repindex,i ∶ Bref, i → ArgiA(γ,A, B⃗), and repB,i ∶ (x ∶ Bref, i) →
Bi(repindex,i(x)) (we will assume all this when working with SPB), we can now

construct functions repA,n ∶ argnA(γ,Aref, B⃗ref)→ ArgnA(γ,A, B⃗) with the help of

lift′ by defining

repA,0 = repA ,

repA,n+1 = lift(

nn

i=0

repA,i, inn ○ repindex,n, repB,n) .

Note that repA,1 as defined earlier is an instance of this definition.

4.3 SPB, ArgB and IndexB

The datatype SPB of codes for constructors for B is just as SPA, but with two
differences: first, we can refer to constructors of A (so we will need a code γA ∶ SP′

A

to know their form, and sets Bref, 0, Bref, 1, . . .Bref, i, . . . to represent elements in
B indexed by i nested constructors). Second, we also need to specify an index for
the codomain of the constructor (so we will store this index in the nilB code).

All constructions from now on will be parameterised on the maximum number
k of nested constructors for A that we are using, so we are really introducing
SPB,k, ArgB,k etc. However, we will work with an arbitrary k but suppress it as
a premise. With this in mind, we have formation rule

γA ∶ SP′
A Aref ∶ Set Bref, 0,Bref, 1, . . . ,Bref, k ∶ Set

SPB(γA,Aref,Bref, 0,Bref, 1, . . . ,Bref, k) ∶ Type

Let SP′
B(γA) ∶= SPB(γA,0,0, . . . ,0) for γA ∶ SP′

A be the code of inductive-
inductive definitions.

The introduction rules for SPB are very similar to the rules for SPA, but
now we specify an index in nilB, and we have k + 1 rules B0-ind, . . . ,Bk-ind
corresponding to how many nested constructors for A we want to use:

aindex ∶+
k
i=0 argiA(γA,Aref, B⃗ref)

nilB(aindex) ∶ SPB(γA,Aref,Bref, 0, . . . ,Bref, k)

K ∶ Set γ ∶K → SPB(γA,Aref,Bref, 0, . . . ,Bref, k)

nonind(K,γ) ∶ SPB(γA,Aref,Bref, 0, . . . ,Bref, k)

K ∶ Set γ ∶ SPB(γA,Aref +K,Bref, 0, . . . ,Bref, k)

A-ind(K,γ) ∶ SPB(γA,Aref,Bref, 0, . . . ,Bref, k)

K ∶ Set
hindex ∶K → arg`A(γA,Aref, B⃗ref)

γ ∶ SPB(γA,Aref,Bref, 0, . . . ,Bref, ` +K, . . . ,Bref, k)

B`-ind(K,hindex, γ) ∶ SPB(γA,Aref,Bref, 0, . . . ,Bref, k)



The rules nilB, nonind and A-ind have the same meaning as before, but B-ind has
been split up into several rules. The code B`-ind(K,hindex, γ) represents an induc-
tive argument of type (x ∶K)→ B(i`(x)) with the index i`(x), using ` nested con-
structors for A, given by hindex. Hence hindex has codomain arg`A(γA,Aref, B⃗ref).
For this to work, we will need k+1 families Bi ∶ ArgiA(γA,A, B⃗(i−1))→ Set to inter-
pret these nested constructor indices, together with functions repindex,i ∶ Bref, i →

ArgiA(γ,A, B⃗(i−1)) and repB,i ∶ (x ∶ Bref, i) → Bi(repindex,i(x)) to map elements
to the real elements they represent. Recall that from this and repA ∶ Aref → A,
we can construct functions repA,` ∶ arg`A(γ,Aref, B⃗ref)→ Arg`A(γ,A, B⃗).

Every case of ArgB is the same as the corresponding case for ArgA, except
for B`-ind, where B has been replaced by B` and repA by repA,` (we write “ ”
for passed on arguments and “ ” for passed on sequents of arguments in the
recursive call):

ArgB(γA,Aref, B⃗ref,nilB(aindex),A, B⃗, repA, ⃗repindex, ⃗repB) = 1

ArgB(γA,Aref, B⃗ref,nonind(K,γ),A, B⃗, repA, ⃗repindex, ⃗repB) =

(k ∶K) ×ArgB( , , , γ(k), , , , , )

ArgB(γA,Aref, B⃗ref,A-ind(K,γ),A, B⃗, repA, ⃗repindex, ⃗repB) =

(j ∶K → A) ×ArgB( ,Aref +K, , γ, , , repA ⊔ j, , )

ArgB(γA,Aref, B⃗ref,B`-ind(K,hindex, γ),A, B⃗, repA, ⃗repindex, ⃗repB) =

(j ∶ (k ∶K)→ B`((repA,` ○ hindex)(k))) ×

ArgB( , , ,Bref, `+K, , γ, , , , , repindex,`⊔(repA,`○hindex), , , repB,`⊔j, )

The last missing piece is now IndexB, which to each b ∶ Arg′B(γA, γB ,A, B⃗)
assigns the index a such that the element constructed from b is in B(a). With
γA, Aref, Bref, i etc as above, IndexB has formation rule

IndexB(γA,Aref, B⃗ref, γB ,A, B⃗, repA, ⃗repindex, ⃗repB) ∶

ArgB(γA,Aref, B⃗ref, γB ,A, B⃗, repA, ⃗repindex, ⃗repB)→
k

+
i=0

ArgiA(γA,A, B⃗).

IndexB will take aindex ∶+
k
i=0 argiA(γA,Aref, B⃗ref) which is stored in nilB and map

it to the index element it represents in +k
i=0 ArgiA(γA,A, B⃗). For other codes, it

will follow exactly the same pattern as ArgB, so we omit the rules for them here.

IndexB(γA,Aref, B⃗ref,nilB(aindex),A, B⃗, repA, ⃗repindex, ⃗repB,⋆) = (

kn

i=0

repA,i)(aindex)

IndexB(γA,Aref, B⃗ref,nonind(K,γ),A, B⃗, repA, ⃗repindex, ⃗repB, ⟨k, y⟩) =

IndexB( , , , γ(k), , , , , , y)

⋮



For codes γB ∶ SP′
B(γA) for inductive-inductive definitions, let

Arg′B(γA, γB ,A, B⃗) ∶= ArgB(γA,0, 0⃗, γB ,A, B⃗, !A,
⃗!ArgA ,

⃗!B○!) ,
Index′B(γA, γB ,A, B⃗) ∶= IndexB(γA,0, 0⃗, γB ,A, B⃗, !A, ⃗!ArgA ,

⃗!B○!) .

As an illustration, let us consider the constructor

hangingUnder ∶ ((p ∶ Platform)×(b ∶ Building(p)))→ Building(extension(⟨p, b⟩)) .

Here it is interesting to see that the index of the codomain of the constructor
uses the constructor extension, so it will be represented by an element from
argA(γext,Aref,Bref). We end up with the code γhu = A-ind(1,B0-ind(1, λ ⋆ .p̂,

nilB(in1(⟨̂pb⟩)))), where p̂ = inr(⋆) and ⟨̂pb⟩ = ⟨inr(inr(⋆)),⋆,⋆⟩. (The reader is

invited to check that ⟨̂pb⟩ ∶ argA(γext,Aref,Bref) at that point in the construction
of γhu.) We get

Arg′B(γext, γhu, P,B) = (p ∶ 1→ P ) × (b ∶ 1→ B(p(⋆))) × 1

and Index′B(γext, γhu, P,B, ⟨p, b,⋆⟩) = in1(⟨p, b,⋆⟩).

4.4 Formation and Introduction Rules

We are now ready to give the formal formation and introduction rules for A and
B. They all have the common premises γA ∶ SP′

A and γB ∶ SP′
B(γA), which will

be omitted.
Formation rules:

AγA,γB ∶ Set , BγA,γB ∶ AγA,γB → Set .

Introduction rule for AγA,γB :

a ∶ Arg′A(γA,AγA,γB ,BγA,γB)

introA(a) ∶ AγA,γB

For the introduction rule for BγA,γB , we need some preliminary definitions. We

have BγA,γB ∶ AγA,γB → Set, but need Bi ∶ ArgiA(γA,AγA,γB , B⃗(i−1)) → Set for
0 ≤ i ≤ k to give to Arg′B. We can assemble such Bi’s from BγA,γB , introA and
lift′. To do so, define in a step by step manner

intron ∶ ArgnA(γA,AγA,γB ,B0, . . . ,Bn−1)→ AγA,γB
Bn ∶ ArgnA(γA,AγA,γB ,B0, . . . ,Bn−1)→ Set

(i.e. introduce first intro0, B0, then intro1, B1 and so on) by

intro0 = id

intron+1 = introA ○ lift′(
n

⊔
i=0

introi,
n

⊔
i=0

(λa.id))

Bi(x) = BγA,γB(introi(x))



Hence the introduction rule for BγA,γB can be given as:

b ∶ Arg′B(γA,AγA,γB ,BγA,γB ,B1, . . . ,Bk)

introB(b) ∶ BγA,γB(index(b))

where index takes the index in +k
i=1 ArgiA(γA,AγA,γB , B⃗) returned by Index′B

and applies the right introi to it, i.e.

index = (
k

⊔
i=0

introi) ○ Index′B(γA, γB ,AγA,γB ,B0, . . . ,Bk) .

Elimination rules similar to the rules for indexed inductive definitions can
also be formulated, but we here omit them due to lack of space (see [14] for full
details).

4.5 Contexts and Types Again

As a final example, let us construct Ctxt and Ty from Section 1. With the
abbreviation γ0 +SP γ1 ∶= nonind(2, λx.if x then γ0 else γ1), we can encode
several constructors into one. The codes for the contexts and types are

γCtxt = nilA +SP A-ind(1,B-ind(1, λ ⋆ .inr(⋆),nilA)) ∶ SP′
A

γ’set’ = A-ind(1,nilB(inl(inr(⋆))))
γΠ = A-ind(1,B0-ind(1, λ ⋆ .inr(⋆),B1-ind(1, λ ⋆ .⟨ff, ⟨λ ⋆ .inr(inr(⋆)),

⟨λ ⋆ .⋆,⋆⟩⟩⟩,nilB(inl(inr(⋆))))))
γTy = γ’set’ +SP γΠ ∶ SP′

B(γCtxt) .

We have Ctxt = AγCtxt,γTy
and Ty = BγCtxt,γTy

and we can define the usual
constructors by

ε ∶ Ctxt ’set’ ∶ (Γ ∶ Ctxt)→ Ty(Γ )
ε = introA⟨tt,⋆⟩ , ’set’(Γ ) = introB⟨tt, ⟨(λ ⋆ .Γ ),⋆⟩⟩ ,

cons ∶ (Γ ∶ Ctxt)→ Ty(Γ )→ Ctxt
cons(Γ, b) = introA(⟨ff, ⟨(λ ⋆ .Γ ), ⟨(λ ⋆ .b),⋆⟩⟩⟩) ,

Π ∶ (Γ ∶ Ctxt)→ (A ∶ Ty(Γ ))→ Ty(cons(Γ,A))→ Ty(Γ )
Π(Γ,A,B) = introB(⟨ff, ⟨(λ ⋆ .Γ ), ⟨(λ ⋆ .A), ⟨(λ ⋆ .B),⋆⟩⟩⟩⟩) .

5 A Set-theoretic Model

Even though SPA and SPB are straightforward (large) inductive definitions,
this axiomatisation does not reduce inductive-inductive definitions to indexed
inductive definitions, since the formation and introduction rules are not instances
of ordinary indexed inductive definitions. (However, we do believe that induction-
induction can be reduced to indexed induction with a bit of more work, and plan
to publish an article about this in the future.) To make sure that our theory is
consistent, it is thus neccessary to construct a model.



A model of our theory can be constructed in ZFC set theory, extended by
two strongly inaccessible cardinals i0 < i1 in order to interpret Set and Type.
Our model will be a simpler version of the models developed in [9, 11]. Here we
present the main ideas; more details can be found in [14]. See Aczel [1] for a more
detailed treatment of interpreting type theory in set theory.

For every expression A of our type theory, we will give an interpretation
JAKρ, which might be undefined. Open terms will be interpreted relative to an
environment ρ, i.e. a function mapping variables to terms, and contexts will be
interpreted as sets of environments.

We interpret the logical framework exactly as in [9]; Each type is interpreted
as a set, a ∶ A is interpreted as a ∈ A, (x ∶ A)→ B as the set-theoretic Cartesian
product Πx∈AB etc. Set is interpreted as Vi0 and Type as Vi1 .

SPA can be interpreted as the least set JSPAK(D,D′) such that

JSPAK(D,D′) = 1 + ∑
K∈JSetK

(K → JSPAK(D,D′)) + ∑
K∈JSetK

JSPAK(D +K,D′)

+ ∑
K∈JSetK

∑
h∶K→D

JSPAK(D,D′ +K) ,

which must be an element of JTypeK = Vi1 by the inaccessibility of i1. We define

JnilAK ∶≃ ⟨0,0⟩ , JA-ind(K,γ)K ∶≃ ⟨2, ⟨K,γ⟩⟩ ,

Jnonind(K,γ)K ∶= ⟨1, ⟨K,γ⟩⟩ , JB-ind(K,h, γ)K ∶≃ ⟨3, ⟨K, ⟨h, γ⟩⟩⟩ .

JSPBK and JnilBK, JB`-indK are defined analogously. JArgAK. JArgBK, and JIndexBK
are defined according to their equations.

Finally, we have to interpret AγA,γB , BγA,γB , introA and introB. Let

JAγA,γB K ∶≃ Ai0 , JBγA,γB K(a) ∶≃ Bi0(a) , JintroAK(a) ∶≃ a , JintroBK(b) ∶≃ b ,

where Aα and Bα are simultaneously defined by recursion on α as

Aα ∶= JArg′AK(γA,A<α,B<α) ,

Bα(a) ∶= {b ∣ b ∈ JArg′BK(γA, γB ,A<α, ⃗B<α) ∧ JIndex′BK(γA, γB ,A<α, ⃗B<α, b) = a} .

Theorem 1 (Soundness).
(i) If ⊢Γ context, then JΓ K ↓.
(ii) If Γ⊢A ∶ E, then JΓ K ↓, and for all ρ ∈ JΓ K, JAKρ ∈ JEKρ, and also JEKρ ∈

JTypeK if E /≡ Type.
(iii) If Γ⊢A = B ∶ E, then JΓ K ↓, and for all ρ ∈ JΓ K, JAKρ = JBKρ, JAKρ ∈ JEKρ

and also JEKρ ∈ JTypeK if E /≡ Type.
(iv) ⊬ a ∶ 0. ◻

6 Conclusions and Future Work

We have introduced and formalised a new principle, namely induction-induction,
for defining sets in Martin-Löf type theory. The principle allows us to simultane-
ously introduce A ∶ Set and B ∶ A→ Set, both defined inductively. This principle



is used in recent formulations of the meta-theory of type theory in type theory
[5, 4].

In the future, the relationship between the principle presented here and what
is implemented in Agda will be investigated further. Agda implements arbitrary
number of levels, i.e. we can have A ∶ Set, B ∶ A→ Set, C ∶ (a ∶ A)→ B(a)→ Set
etc., and induction-induction can be used in conjunction with induction-recursion
(with the side effect of a self-referring universe). Apart from this, we speculate
that our theory covers what can be defined in Agda. However, just as for ordinary
induction, we do not expect dependent pattern matching to follow from our
elimination rules without the addition of Streicher’s Axiom K [16].

On the theoretical side, work is underway to show that inductive-inductive
definitions can be reduced to indexed inductive definitions. This would show that
the proof theoretical strength does not increase compared to ordinary induction.
Normalisation, decidability of type checking and a categorical semantics similar
to initial algebra semantics for ordinary inductive types are other topics left for
future work.
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