
XXIV IMEKO World Congress “Think Metrology”
August 26 - 29, 2024, Hamburg, Germany

LabMate: a prospectus for types for MATLAB

Conor McBride 1, Georgi Nakov 1, Fredrik Nordvall Forsberg 1, André Videla 1, Alistair Forbes 2, Keith
Lines 2

1 University of Strathclyde , UK
2 National Physical Laboratory, UK

Abstract - Many computations in science and engineering
are implemented in the programming language MATLAB.
However the high-level meaning of such MATLAB programs
stays informal, which can lead to implementation errors and
bugs, for example relating to incompatible units of measure
for quantities, or incompatible sizes of matrices at runtime.
We are in the process of developing LabMate, which is a
tool for reifying current informal programmer practices into a
language of formal comments. These comments are ignored
by MATLAB, but acted on and checked by LabMate. We
outline the design principles behind LabMate, our current
progress, and our future plans.

Keywords: MATLAB, software correctness, dimensional
consistency, type theory

1. Introduction

MATLAB is a key workhorse in many scientific and
engineering disciplines that are heavily reliant on numerical
methods. It helps us do powerful things. However, as with
all software, MATLAB code may contain implementation
errors and bugs. In good programming practice for MATLAB
developers, programmers use comments to make clear what
physical systems their data concern and how the data should
be interpreted, specifying, e.g., units of measure for quantities.
Regrettably, none of this rich and often disciplined metadata
is perceptible to MATLAB, which instead enforces the com-
patibility of producers and consumers of data by run-time
checking of tags which indicate only machine representation,
not any form of meaning. In reality, the programmers docu-
ment meaning for each other’s benefit but keep the machine
in the dark.

To rectify this situation, we are developing LabMate,
which is a tool to reify current virtuous engineering prac-
tices as a formal language of MATLAB comments. MAT-
LAB remains in the dark, but LabMate reads, assesses, and
transforms MATLAB programs in accordance with these
comments. Behind the scenes, LabMate is retrofitting an ex-
pressive type system to MATLAB, with more of the meaning
of programs recorded in their types. This gives a lightweight
and low-cost way for MATLAB programmers to express their
intent, and in a language they are already working in, rather
than starting over from scratch. While type systems and their
theory is a well established discipline of computer science,
the development of LabMate has several novel advances on
the algebraic structure required to classify matrices and the

meanings of the quantities therein, e.g., their physical dimen-
sions. LabMate brings advanced type systems to effectiveness
within, rather than instead of, existing scientific and engineer-
ing toolchains and practices.

LabMate is under constant development; we encourage
interested readers to get in touch for access to the latest ver-
sion. At time of writing, the necessary core type system is
in place: we are busily extending the variety of MATLAB
expressions it can make sense of, and the constraints it can
solve. This paper effectively documents how far we have
come, and the roadmap to our next milestone.

2. LabMate in action

The following greatly simplified, but still realistic, ex-
ample from metrology will help illustrate the principles of
how LabMate will work. Consider one of the calculations
required for measuring resistors using a cryogenic current
comparator bridge [1].

An electric current with a known value (the applied
signal) is passed through the resistor being measured, and
a series of voltage readings are taken at fixed time intervals
(the recorded output). After a specified number of readings
are taken, the direction of the input signal must be reversed
in order to separate the offset and drift from the voltage read-
ings. Therefore, the applied signal (bridge energisation) is a
square wave of reversals. A calibration factor is also applied,
dividing the signal into two parts with different amplitudes.

The recorded output follows the input signal, superim-
posed on a detector with noise, offset and drift. Figure 1
provides an example of recorded output, using simulated
data.

Fig.1. Simulated example of recorded output.

The calculation of offset and drift is achieved using a
least squares line fit calculated by solving a series of simul-

taneous equations, listed below. Note that although offset
and drift differ for calibration and non-calibration parts of the
input signal, the drift is the same in both cases.

dnc1 dc1 n1 c1 t1
dnc2 dc2 n2 c2 t2

...
dncN dcN nN cN tN

×

a

acal
c

ccal
m

 =

v1
v2
...
vN

The matrix left of × is made up of the following values:

• The values in the first four columns are purely numeric
and have no associated dimension.

• The first column will contain either 1 or −1 for non-
calibration voltage readings (i.e., those to which the
calibration factor has not been applied) depending on
the direction of the input signal. For calibration readings
the value will be 0.

• The second column contains equivalent values for volt-
age readings in which the calibration factor has been
applied, i.e., 0 for non-calibration readings and 1 or −1
depending on the input signal direction for calibration
readings.

• The third column contains 1 for non-calibration readings
and 0 for calibration.

• The fourth column is the opposite of the third.

• The fifth column contains time values.

The column vector right of × and left of = contains
values to be calculated using the line fit which then determine
the measured value of the resistor by a calculation which is
beyond the scope of this paper. The column vector right of =
contains voltage readings.

This calculation can be converted into a MATLAB prob-
lem using the builtin left division operator \ to compute a
least squares fit. Let us step through how we intend to use
LabMate to help us deliver this solution.

We begin by declaring the types of the input data: the
times and the voltages. Our example calculation uses
twelve time and voltage inputs, arranged as two rows to be
read from a file. A real measurement would involve consider-
ably larger datasets.

%> times :: [1 x 12] double
%> voltages :: [1 x 12] double

Lines starting with ‘%>’ are interpreted as ordinary comments
by MATLAB, but as directives by LabMate, here giving
us enough information not only to insist that the values of
times and voltages conform to the given sizes, but to
determine how to read them from a file. We would issue the
further directive

%> readfrom "inputs.txt" times voltages

LabMate is a program transducer: its output is a modified
version of its input, allowing it to respond to directives with
information in comments or by generating code. Here we
would expect to see something like

%> readfrom "inputs.txt" times voltages
%<{
h=fopen("inputs.txt");
c=textscan(h,’%f’);
fclose(h);
src = c{1};
readPtr = 1;
for i = 1:12
times(i) = src(readPtr);
readPtr = readPtr + 1;

end
for i = 1:12
voltages(i) = src(readPtr);
readPtr = readPtr + 1;

end
%<}

where the comment lines ‘%<{’ and ‘%<}’ visually delimit
the extent of the code generated by LabMate, so that humans
may safely ignore it. LabMate knows enough about scope
in MATLAB to ensure that auxiliary variable naming never
creates conflict. We have kept to one datum per line for
simplicity, but we are free to extend our format specification
language as we see fit [2].

Next, let us build up the matrix in the calculation. The
method gives the first four columns a pattern of blocks, pasted
in a grid.

%> z3 :: [3 x 1] double
z3 = [0; 0; 0]
%> i3 :: [3 x 1] double
i3 = [1; 1; 1]

ddnc = [i3 z3 i3 z3
-i3 z3 i3 z3
z3 i3 z3 i3
z3 -i3 z3 i3]

LabMate will check that this pasting strategy delivers a rectan-
gular matrix, well in advance of MATLAB runtime. Pasting
on the measured times (transposed to a column) completes
the matrix. Let us ask for its type. LabMate responds to
information-seeking directives by writing comments of its
own, beginning with ‘%<’.

M = [ddnc times’]
%> typeof M
%< M :: [12 x 5] double

Now that we have assembled the data, we may solve the
equations and ask for the type of the solution.

x = M \ voltages
%> typeof x

Did you notice the error in the above code? The vector
voltages should be of size 12 × 1, but is erroneously
of size 1 × 12 instead. LabMate will detect this error and
respond:

x = M \ voltages
%< unsolved constraint 12 =? 1
%> typeof x
%< the type of x is quite a puzzle

That is, for x to have a sensible type, we need M and
voltages to have the same number of rows. We forgot
to transpose voltages! If we make the necessary repair,
we should now see something more satisfying.

x = M \ voltages’
%> typeof x
%< x :: [5 x 1] double

This way, LabMate can detect matrix size errors at develop-
ment time, rather than at runtime — running the original code
would indeed crash with the error:

Matrix dimensions must agree

3. Types for matrices

Under the hood, LabMate translates selected well be-
haved MATLAB expressions to typed expressions in its own
core theory of types and values. As matrices feature heavily
in MATLAB code, the types of matrices play a central role
in this theory. In particular, we acknowledge that the rows
and columns of a matrix might pertain to distinct individual
entities, rather as the rows and columns of a spreadsheet do.
Internally, a matrix type looks like

MatrixRC E rs cs

We thus parametrize matrix types by two arbitrary ‘header’
types R, for the individuals the rows concern, and C for the
columns. We may then give two lists, rs = [r1, . . . , rm] ∈
ListR (so that each ri ∈ R) and cs = [c1, . . . , cn] ∈ ListC
of those individuals. A parametrized type E(r, c) gives the
type of entry for any combination of row and column indi-
vidual, with E(ri, cj) being the type of the entry ei,j . In
the diagram below, the es inside the rectangle are the ma-
trix entries computed by the MATLAB code. The rs and cs
outside the rectangle are metadata coming from the matrix
type, known only to LabMate, and not available as data to
MATLAB.

c1 · · · cj · · · cn
r1 e1,1 e1,j e1,n

...
ri ei,1 ei,j ei,n

...
rm em,1 em,j em,n

To check that MatrixRC E rs cs is a valid type, LabMate
must:

1. check that R and C are both valid types;

2. check that E(r, c) is a valid type whenever r ∈ R and
c ∈ C;

3. check that rs ∈ ListR and cs ∈ ListC.

A notable special case is when both R and C are the
unit type R = C = 1, that is, the type with exactly one
element. List1 amounts to a mere ‘tally’, counting indistinct
things, which we allow to be written as a number in decimal
notation. In this case, there is only one type of entries E(r, c)
(because both r and c must be the unique element of the unit
type), and the only information available in the lists rs : List1
and cs : List1 are their lengths. Thus, we have recovered
Matrix11Emn as the type of m× n matrices with entries
of type E, where m and n are the unique lists over the unit
type of length m and n respectively. That is what we render
in LabMate directives and responses as

[m x n] E

as in our M :: [12 x 5] double in Section 2.
So much for what it is to be a valid matrix type: what

does it mean to be a valid matrix in such a type?
Firstly, a singleton entry matrix must have singleton

header lists [r] and [c].

c
r e ∈ E(r, c) ∈ MatrixRC E [r] [c]

Secondly, to check a horizontal pasting of matrices, we
must ensure that the header and entry types match, that the
row headers are the same for left and right, and that the col-
umn headers can be split into a prefix for the left matrix and
a suffix for the right. In other words, the column headers for
the whole are the concatenation (++) of the column headers
for the parts.

csA csb

A ∈ B ∈
rs MatrixRC E rs csA MatrixRC E rs csB

∈ MatrixRC E rs (csA ++ csB)

Thirdly, vertical pasting is similar, except that it is the
row headers which split into prefix and suffix while the col-
umn headers are shared.

cs

A ∈
rsA MatrixRC E rsA cs

B ∈
rsB MatrixRC E rsB cs

∈ MatrixRC E
(rsA ++ rsB) cs

Now that we have matrices, we must explain how to
typecheck matrix operations.

To check if we may add matrices A and B, LabMate
must:

1. check that A and B both have the same matrix type
MatrixRC E rs cs;

2. check that every entry type E(r, c) admits addition.

In the short term, LabMate can get by with a hard-coded
table of which types (e.g. double) admit addition, but more
flexible and general approaches to operator overloading (e.g.,
Haskell’s ‘type classes’ [3]) are readily adoptable in due
course.

Multplication is rather more involved, of course. The
usual requirement that the matrix sizes ‘meet in the middle’
generalises straightforwardly to lists of headers,

ms

A ∈
rs MatrixRM E1 rs ms

×

cs

B ∈
ms MatrixM C E2

ms cs

∈

cs

rs MatrixRC E3

rs cs

but we must also check that the entry types are compatible.
Specifically, LabMate must:

1. check, for all r, m and c, that if a ∈ E1(r,m) and
b ∈ E2(m, c), then a× b ∈ E3(r, c);

2. check that every entry type E3(r, c) admits addition.

These conditions are straightforward in the special case
where R = C = 1 and the Es are standard numerical types.
There are, however, more motivating possibilities.

Of particular interest is the case when the header types,
R and C, are types of physical dimensions, with E(r, c)
being the type of physical quantities of dimension r−1 · c.
Such quantities admit addition only if the dimensions match.
Meanwhile, their multiplication correspondingly multiplies
the dimensions. This way, we can reduce dimensional con-
sistency checking à la Kennedy [4] to typechecking, but also
for programs involving matrices of non-uniform dimension,
following the work of Hart [5]. We will see in Section 5 how
this can be helpful.

Checking the compatibility between operations and data
boils down to checking equality of types. LabMate types are
dependent types, in the style of the state-of-the-art functional
programming languages Agda and Idris [6, 7, 8]. Dependent
types express the reality that data validity is often a relative

notion, with the compatibility requirements for matrix mul-
tiplication being a standard example. Types which mention
(hence depend on) some values (e.g., our header lists) are
used to classify other values (e.g., our matrices) with respect
to them.

Equality of types therefore demands some notion of
equality for the values they mention. We equip every type in
our core theory with an algorithmic decision procedure testing
when two expressions in the type are sufficiently obviously
equal to guarantee compatibility of types. Languages like
Agda and Idris generate their notion of expression equality by
extending the evaluation rules used to compute with values
at runtime to cope with expressions involving variables by
getting stuck whenever a variable prevents a condition from
being tested. In MATLAB, the matrix pastings [[A B] C]
and [A [B C]] both mean the same thing as [A B C],
but for us to see that requires algebraic properties of the ++
operator for our header lists. The state-of-the-art languages
turn up to this algebra fight armed only with arithmetic! They
force their programmers to give explicit proofs of type com-
patibility, doing the algebra by hand. We would not dream of
inflicting this bureaucracy on LabMate users, especially when
the small amount of algebra we need is perfectly straightfor-
ward [9].

We incorporate the specific algebraic theories we need to
manage matrices and dimensions into LabMate’s expression
equality. Indeed, we also consider when matrix expressions
are equal. We reassociate horizontal and vertical pastings, so
that

A B
C D

=
A B

C D

4. Implementation and Current Status

In contrast to most other typecheckers, LabMate works
using a transducer model of interaction: it inputs MATLAB
code with formal comments, and outputs a new version of its
input, responding to the comments, as if it were a develop-
ment collaborator. It thus needs to make sure that it retains
as much of the input formatting as possible. Making sense
of MATLAB code presented a significant reverse engineer-
ing challenge, as the MATLAB syntax is largely specified
informally and by example.

The meaning of whitespace in MATLAB is highly
context-sensitive — e.g., (2 - 2), [2 - 2] and (2 -2)
all meaning zero, but [2 -2] being a 2× 1 matrix. Another
precursor to typechecking is the deduction of variable scope:
as proof of concept, we implemented the directive

%> rename x y

which requests LabMate to rename all and only the occur-
rences of the x in scope at that point to y, but only if that
does not conflict with other things called y. To our surprise,
we discovered that a similar facility offered by MATLAB’s
own editor sometimes changes the semantics of programs,
which is presumably not what the user intends. Writing a

typechecker, we cannot afford the luxury of waiting until
runtime to figure out which x is which.

LabMate elaborates MATLAB expressions and com-
mands into terms of its own internal core type theory. Al-
though the simple examples in this paper use constant sizes
and dimensions, any practicable library requires size, header
and dimension expressions to contain parameters. For exam-
ple, if A is i× j and B is i× k, then

[A B
B A]

should be a valid matrix pasting, because j + k = k+ j. Our
notion of equality for numbers thus includes tacit applications
of commutative and associative laws. Physical dimensions
are modelled as the free Abelian group generated by some
base set of dimensions [10], so we decide that theory, too.
The core theory we need is in place.

The actual typechecking is implemented as a stack based
virtual machine which traverses the syntax tree, deducing its
translation into the core theory by propagating type infor-
mation, generating typing constraints, and solving them by
unification [11]. In order to support a much more expres-
sive language of types, we must move on from the classic
requirement that all constraints can be solved or rejected on
first inspection and hence that the program can be processed
exactly once and in a specific order [12]. Our virtual machine
supports repeated refocusing to wherever in the program there
is progress to be made. Moreover, as MATLAB notation is
somewhat overloaded (e.g., * can mean either scalar or ma-
trix multiplication), so LabMate elaboration has a (limited)
need for backtracking search, so that, too, is facilitated.

After the virtual machine has solved as many problems
as it can, we analyse its final state to reconstruct the out-
put source code, perhaps with inserted warnings and error
messages, or additional responses to queries and generated
code.

5. Supporting dimensional consistency

Coming back to the example from Section 2 again, we
aim to give both M and voltages more precise types, also
taking their physical dimensions into account,

%> M :: [12 x k::D<-[{},{},{},{},T]] Q(k)
%> voltages :: [1 x 12] Q(V)

but we had better unpack what we mean.
Firstly, M’s row header type remains 1, so our row

header list is still abbreviated by a number.
Secondly, we see Q(d) as the type of quantities with

physical dimension d, represented in MATLAB as a mere
double with standardised units. We shall define a type D of
dimensions presently. The notation

k::D<-[{},{},{},{},T]

will tell LabMate that the column header type is D, and that
the matrix entry type Q(k) varies in accordance with the
header, locally named k, which is drawn from the given list

of dimensions. But what type is D? We will have defined, in
LabMate directives, rather than MATLAB,

%{>
Base =

[’Time, ’Length, ’Mass, ’Current,
’Temperature, ’Amount, ’Luminosity]

D = Abel(Enum(Base))
%}

where Base is a list of symbolic constants standing for base
dimensions, Enum converts any such list to a finite enumera-
tion type, and Abel constructs the free Abelian group on any
type of generators, with unit {}, singleton generators {g},
multiplication *, division /, and exponentiation by integer
constants ˆ. We further define

%{>
T = {’Time}
V = {’Mass}*{’Length}ˆ2/Tˆ3/{’Current}
%}

and voltages becomes a row vector uniformly containing
quantities in Q(V).

With this refinement in place

x = M \ voltages’
%> typeof x

will yield

%< x :: [k::D<-[{},{},{},{},T]] Q(V/k)

In other words, x is a column vector comprising four
quantities in Q(V) and a fifth in Q(V/T). LabMate has thus
propagated the dimensional variation from the type of M to
the type of x, while retaining the uniformity of V in the type
of voltages. Checking multiplicability for matrices of
quantities Q(d(i, j)) and Q(d(j, k)) amounts to checking
that d(i, j)*d(j, k) is independent of j. In our example, there
is no dimensional variation in the ‘middle’ of the inputs, so
multiplicability is evident. There is a degree of freedom to
multiply headers by an arbitrary dimension and compensate
in the entry type, but we avoid ambiguity by sticking to Hart’s
discipline [5], namely

1. ensure any list of dimensions starts with the unit, {};

2. divide by dimensions coming from a row header;

3. multiply by dimensions coming from a column header.

Valid operations which respect Hart’s discipline will always
have header lists which meet in the middle exactly and yield
outputs which retain Hart’s discipline [13].

6. Conclusions and future work

We have illustrated our prospectus for LabMate, a third-
party programming assistant for MATLAB. Its type system
offers expressivity well beyond the dynamic type tagging
that MATLAB does itself. Typechecking with LabMate is no

ironclad guarantee of complete correctness, but it is relatively
lightweight and has the potential to rule out large classes of
silly mistake, including dimensional inconsistency.

However, if all LabMate does is complain about mis-
takes, it will not appeal to programmers in a hurry. We have
already shown a simple example where LabMate does not
merely check but rather generates code using its types as
specification. There is considerable potential to push further
in this direction, little by little. For example, we could equip
LabMate with its own expression language for calculating
with quantities which have not only dimensions but units,
compiling to MATLAB with appropriate conversion factors
correctly inserted. Our mission is, ever so gently, to tilt the
balance towards programming at a higher level of structure
and meaning in LabMate’s directive language.

So far, our focus has been on calculation with matrices,
as this is what makes MATLAB unique as a programming
language. In the future, we would like to also extend our
coverage to conditionals and loops, which might necessitate
some approximation of what is known about program frag-
ments at runtime. We also have our work cut out to retrofit
LabMate types to MATLAB libraries.

Inspired again by Kennedy’s work — his gradualist ref-
ormation of PHP [14] — we have set out on this journey to
bring the benefits of expressive type systems to scientists and
engineers where they are. It would be unrealistic of us to
expect practitioners to abandon their existing toolchains and
learn whole new programming styles and languages that, in
any case, exist only as academic research prototypes. More-
over, it has very much not turned out that, in addressing
MATLAB, we were merely applying type system research
already well established. This project has pushed us in new
directions and generated raised expectations of the algebra to
be done by the typechecker. There is so much to learn from
applications of dependent types in the wild!

Acknowledgements

This work was undertaken jointly by the Mathematically
Structured Programming Group of the University of Strath-
clyde and the National Physical Laboratory’s Data Science
department as part of Data Science’s Tools for Trustworthi-
ness National Measurement System (NMS) project 2023 –
2024.

Thanks to NPL colleague Nick Fletcher for his help and
guidance providing the example from Section 2. Thanks also
to NPL colleagues Peter Harris, Louise Wright and Ian Smith
for reviewing this paper, and to Professor Neil Ghani for his
support.

REFERENCES

[1] J M Williams, T J B M Janssen, G Rietveld, and E Houtza-
ger. An automated cryogenic current comparator resistance
ratio bridge for routine resistance measurements. Metrologia,
47(3):167, 2010.

[2] Conor McBride, Georgi Nakov, and Fredrik Nordvall Fors-
berg. Measuring with confidence: leveraging expressive type

systems for correct-by-construction software. Acta IMEKO,
12(1):1–5, 2023.

[3] Philip Wadler and Stephen Blott. How to make ad-hoc poly-
morphism less ad hoc. In Proceedings of the 16th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL ’89), pages 60–76. ACM, 1989.

[4] Andrew Kennedy. Types for units-of-measure: Theory and
practice. In Zoltán Horváth, Rinus Plasmeijer, and Viktória
Zsók, editors, Central European Functional Programming
School (CEFP 2009), Revised Selected Lectures, volume
6299 of Lecture Notes in Computer Science, pages 268–305.
Springer, 2009.

[5] George W. Hart. Multidimensional Analysis. Springer, 1995.
[6] Thorsten Altenkirch, Conor McBride, and James McKinna.

Why dependent types matter. Available at https://www.
cs.nott.ac.uk/˜psztxa/publ/ydtm.pdf, 2005.

[7] Ulf Norell. Towards a practical programming language based
on dependent type theory. PhD thesis, Chalmers University of
Technology, 2007.

[8] Edwin Brady. Idris 2: Quantitative type theory in practice. In
Anders Møller and Manu Sridharan, editors, Proceeding of
the 35th European Conference on Object-Oriented Program-
ming (ECOOP 2021), volume 194, pages 9:1–9:26. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

[9] Guillaume Allais, Conor McBride, and Pierre Boutillier. New
equations for neutral terms: a sound and complete decision
procedure, formalized. In Proceedings of the 2013 ACM SIG-
PLAN Workshop on Dependently-Typed Programming (DTP
’13), pages 13–24. ACM, 2013.

[10] Charles C. Sims. Computation with Finitely Presented Groups,
volume 48 of Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, 1994.

[11] J. A. Robinson. A machine-oriented logic based on the resolu-
tion principle. J. ACM, 12(1):23––41, 1965.

[12] Luis Damas and Robin Milner. Principal type-schemes for
functional programs. In Proceedings of the 9th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages
- POPL ’82, POPL ’82. ACM Press, 1982.

[13] Conor McBride and Fredrik Nordvall Forsberg. Type systems
for programs respecting dimensions. In Franco Pavese, Forbes
Alistair, Nien-Fan Zhang, and Anna Chunovkina, editors, AM-
CTM XII, pages 331–345. World Scientific, 2022.

[14] Andrew Kennedy. Driving types into PHP (invited talk). In
Sam Lindley and Brent A. Yorgey, editors, Type-Driven Devel-
opment 2017, page 1. ACM, 2017.

https://www.cs.nott.ac.uk/~psztxa/publ/ydtm.pdf
https://www.cs.nott.ac.uk/~psztxa/publ/ydtm.pdf

