
XXIV IMEKO World Congress “Think Metrology”
August 26 - 29, 2024, Hamburg, Germany

Preserving model structure and constraints in scientific computing

Alistair Forbes1,*, Keith Lines1, Fredrik Nordvall Forsberg2, Conor McBride2 and Andre Videla2

1 National Physical Laboratory, UK
2 University of Strathclyde, UK

*Corresponding author, email address: alistair.forbes@npl.co.uk

Abstract - In this paper, we look at how model structure
and constraints can be incorporated into scientific comput-
ing using functional programming and, implicitly, category
theory, in a way that constraints are automatically satisfied.
Category theory is the study of different types of objects
(e.g., sets, groups, vector spaces) and mappings between
them (e.g., functions, homomorphisms, matrices) and is used
in mathematics to model the underlying structure associated
with systems we wish to describe and how this underlying
structure is preserved under transformations. In this paper,
we look at the structure associated with the representation
of, and calculations using, quantitative data. In particular,
we describe how measurement data can be represented in
terms of the product C ×D of two groups: the first, C, the
counting algebra, and the second, D, the dimension alge-
bra. Different but equivalent unit systems are related through
group isomorphisms. The structure associated with this rep-
resentation can be embedded in software using functional
programming.

Keywords: dimensioned variable, functional programming,
numerical computation, units of measurement

1. Introduction

Current practice in scientific computing in metrology usually
involves a) writing a report or paper providing a model for
the system under study and how measurement data can be
used extract information about quantities of interest, b) de-
signing an algorithm that uses the model and measurement
data to compute estimates of the relevant model parameters
(and their associated uncertainties), c) implementing the al-
gorithm in software, and d) testing software to increase the
level of trust in the software. Good practice dictates that the
software should be well commented and documented so that
a user can follow the logic and intent of the written instruc-
tions. However, while the intent of a piece of software may
be made clear in the comments section and supporting docu-
mentation, for nearly all computing languages used regularly
in scientific computing, the compiler only sees the coded in-
structions and has no way of checking whether the code is
actually performing the required tasks.

The way most of us write software has not changed much
in 50 years and we use essentially the same text editors to
write software as we use to write reports and papers. How-
ever, computer science has evolved enormously over the last

50 years, not just in terms of faster computation and larger
memory, but also in terms of the semantic reach of com-
puter languages that embed logic and inference. In partic-
ular, functional programming languages are designed to be
able to represent model structure and constraints that we nor-
mally would write in mathematics.

Category theory [11, 15] is the study of different types of
objects (e.g., sets, groups, vector spaces) and mappings be-
tween them (e.g., functions, homomorphisms, matrices) and
is used in mathematics to model the underlying structure as-
sociated with systems we wish to describe and how this un-
derlying structure is preserved under transformations.

Model constraints can be used in two ways. Firstly, soft-
ware that claims to perform the required calculations can be
checked by the compiler to see if the constraints are satis-
fied. The second point of view is that each model constraint
reduces the set of programs/mappings, from all possible pro-
grams that could be written, that are consistent with the con-
straints. With enough model constraints, we can end up with
only one program/mapping that satisfies the constraints and
the compiler implicitly or explicitly constructs this program
based on the constraints. In fact the role of a functional re-
quirements specification in standard programming method-
ologies is to specify the required behaviour of the program.
Such functional requirements, if they were written in ap-
propriate language, act as the model constraints that help
check or even construct the required software. By incor-
porating model constraints such as those defined by dimen-
sioned variables, it is hoped that much more programming
errors will be detected by the compiler, significantly increas-
ing the trustworthiness of numerical computation.

In this paper, we are interested in model constraints and how
they relate to functional programming, section 2, the type
of constraints that arise from assigning dimensions (length,
mass, etc.) to variables, section 3, and how these constraints
can be incorporated into scientific computing, section 4.

2. Functional programming: a motivation

There are two main computer programming paradigms, im-
perative programming and functional programming. Most
standard languages used for scientific computation are im-
perative and programs are a list of instructions (imperatives,
commands) that the computer has to perform in order to



complete the calculation. Functional programs regard func-
tions as the primary element and programs are compositions
of functions in which the behaviour of each function is con-
strained to achieve a specific result. As long as each function
is specified correctly, the composite program is constrained
to produce the correct result: ‘correctness is built in’. A sim-
ple example below attempts to give a flavour of a functional
programming approach.

2.1. Example: a collection of mass standards

Suppose a mass laboratory has a set of mass standards S =
{s1, s2, . . . , sn} that it uses to calibrate other mass artefacts
using a mass balance. Each of the standards is a right circular
cylinder in shape. In order to compensate for air buoyancy
effects [14], it is necessary to know the volume and density
of each artefact.

We suppose that the mass, height and radius of each artefact
is known, defining three functions m,h, r : S −→ R. We
denote of the set of mappings from S to R by RS so that m,
h, and r are three elements of RS . Since S has n elements,
we note that RS can be represented as Rn, derived from a
function indexing the elements of S. We say that RS is iso-
morphic to Rn and write RS ∼= Rn (as sets). The functions
m, h, and r equivalently, specify three m × 1 vectors m, h
and r, in Rn. we can also think of (m,h, r) as an element of
RS × RS × RS ∼= (R3)S ∼= (R3)n ∼= R3n ∼= (Rn)3. This
chain of isomorphisms maps the three functions (m,h, r) to
the 3n-vector (m⊤,h⊤, r⊤)⊤ and the 3-tuple (m,h, r).

More generally, for any three sets A, B and C, with CA

denoting the set of functions from A −→ C, CA×B ∼=(
CB

)A ∼=
(
CA

)B
. The exponential notation suggests the

analogous arithmetical identities for numbers a, b and c:
cab = (ca)

b
=

(
cb
)a

. Here, and above, A × B denotes
the Cartesian product of A with B given by the set of pairs
{(a, b) : a ∈ A, b ∈ B}. The Cartesian product has
two associated mappings, also referred to as projections,
πA : A × B −→ A and πB : A × B −→ B defined by
πA(a, b) = a and πB(a, b) = b.

The density associated with a right circular mass artefact can
be inferred from the following facts: a) density is mass over
volume, b) the volume of a right cylinder is its height times
its cross-sectional area, c) the cross-section of a right circular
cylinder is a circle, and d) the area of circle is π times its
radius squared. These facts can be represented by functions
d(m, v) calculating density, v(h, a) calculating the volume
of a cylinder, and a(r) calculating the area of a circle. The
density calculation d : S −→ R can therefore be written as

d(s) = d(m(s), v(h(s), a(r(s)))) =
m(s)

πr2(s)h(s)
. (1)

Implicit in this calculation are the deductions about the vol-
ume of a right circular cylinder and its density. The den-
sity function is a function of the volume function which is

in turn a function of the area function. It can also been
seen that the density function can be applied to m, h and
r where now m,h, r ∈ RS are themselves functions, defin-
ing d ∈ RS and along the way v ∈ RS . We can gener-
alise to other right cylinders having square or elliptical cross-
sections, for example. The density function d can be written
as d = d(m, v(h, a))) where the area function a has yet to be
specified. With them and v functions specified, such a func-
tion maps functions calculating area to functions calculating
densities and is specified by facts a) and b) above. Adding
facts c) and d) reduces the set of density functions satisfying
the constraints to a set with one element given by (1).

This simple examples involve sets (objects), Cartesian prod-
ucts, functions between sets, sets of functions, functions of
functions, applying model constraints to determined subsets
of functions that meet the model constraints and so on. The
Curry-Howard-Lambek (CHL) [4, 9, 10] correspondence re-
lates concepts in logic, computing and category theory and
says, loosely, that proofs are programs and programs are
mappings. Much of science involves finding symmetries,
invariances, conservation laws, etc., associated with the sys-
tems under study. Category theory can be used to describe
this model structure and constraints and, using the CHL cor-
respondence, these model features can also be embedded in
software.

3. Type constraints and the representation of scientific
data in terms of dimensions and units

This section is concerned with the representation of physical
quantities in terms of numerical values and associated units
[8], particularly from the point of view of enabling machine-
actionable interoperability. We are concerned with a mea-
surable attribute or quantity Q associated with an object: its
mass, its length, etc. The methodology for defining a mea-
surement representation scheme has the following elements.

3.1. A set of base dimensions

The first component of the representation system involves a
set of base attributes, A1, . . . , Ap. The base attributes should
be chosen so that any quantity Q of interest is associated
with a unique dimension vector D(Q) expressed as

DA(Q) = Ad = Ad1
1 Ad2

2 · · ·Adp
p ,

where d is an n-vector of integers. The set of dimensions as-
sociated withA can be identified with the free Abelian group
on the n generators A1, . . . ,Ap which, in turn is isomorphic
to Zp through the isomorphism

Ad = Ad1
1 Ad2

2 · · ·Adp
p 7→ d ∈ Zp.

Below, we use the symbolD to represent Zp. The unit of the
group A associated with so-called ‘dimensionless’ quantities
is mapped to 0D, the p−vector of zeros in Zp.



As a primary example, according to the SI brochure [1], the
dimension vector can be written as

DSI(Q) = dim(Q) = TαLβMγ IδΘϵNζJη, (2)

where T, L, M, I, Θ, N and J represent time, length,
mass, electric current, thermodynamic temperature, amount
of substance, and luminous intensity, respectively.

3.2. A counting algebra used to specify numerical values

The second component of a representation system is required
to represent the numerical value associated with a (measure-
ment of) a quantity. Most usually, we use the positive real
numbers R> = {r ∈ R, r > 0} to specify numerical num-
bers but it is possible to use other algebraic structures for a
counting algebra. A requirement for the counting algebra is
that it supports the operation of multiplication. We will de-
note the counting algebra by C and the multiplicative iden-
tity by 1C . In practice, it is necessary to extend the counting
algebra to support addition and subtraction. Usually, the real
numbers R performs this role.

3.3. Representation of a measured value as a mapping to
R = C ×D

Given base dimensions Ak and counting algebra C, the rep-
resentation of measured values can be thought of as a map-
ping from quantities to R = C × D which we will denote
by

Q 7→ rQ = (cA(Q), dA(Q)), cA(Q) ∈ C, dA(Q) ∈ D,

and refer to cA(Q) as the count associated withQ and dA(Q)
the dimension associated with Q for the particular choice of
base dimensions, indicated by the subscript A.

The fact that C and D are both Abelian groups with respect
to multiplication and addition, respectively, means that the
Cartesian product R = C×D is also an Abelian group with
respect to the operation ∗R defined component-wise as

(c, d) ∗R (e, f) = (c× e, d+ f). (3)

We denote the identity element by 1R with 1R = (1C , 0D).
The inverse (c, d)−1 of (c, d) is given by (1/c,−d). We also
use the symbol ∗D to denote the group operation associated
with D. The group R, as a Cartesian product, has associated
projections that are also group homomorphisms

πC(c, d) 7→ c ∈ C, πD(c, d) 7→ d ∈ D.

There are also group homomorphisms ιC : C −→ R and
ιD : D −→ R given by

ιC(c) = (c, 0D), ιD(d) = (1C , d),

with the properties that πC ◦ ιC and πD ◦ ιD are the identity
homomorphisms on C and D, respectively. By group ho-
momorphism, we mean a mapping that preserves the group

operation. A mapping f : G −→ H between two is a groups
is a homomorphism if f(x ∗G y) = f(x) ∗H f(y) where ∗G
and ∗H are the group operations of G and H , respectively.

The Abelian group structure of R enables the dimensions of
products of quantities to be calculated automatically. Rep-
resenting physical quantities as elements of R allows us to
make sure that the numerical value and associated unit are
always aligned.

3.4. Equivalent systems of measurement representation

Two systems of representing measurement results

Q 7→ (cA(Q), dA(Q) ∈ R, Q 7→ (cB(Q), dB(Q)) ∈ R,

using R = C × D can be said to be equivalent if there is
a group isomorphism, i.e., an invertible homomorphism F :
C×D −→ C×D fromC×D to itself such that (cB , dB) =
F (cA, dA). Such an automorphism has the form

F =

[
FCC FDC

FCD FDD

]
,

where FCC : C −→ C and FDD : D −→ D are group
isomorphisms and FCD : C −→ D and FDC : D −→ C
are group homomorphisms.

Example: R> × Zp

The only isomorphism of R> to itself as a group under mul-
tiplication is the identity mapping. Isomorphisms ofD = Zp

can be represented by a p× p matrix M with integer entries
and determinant ±1. For example, suppose a dimension sys-
tem has base dimensions momentum, P, force, F, and en-
ergy, E. These are related to the SI base dimensions for time,
T, length, L, and mass, M through dT

dL
dM

 =

 1 −1 0
0 −1 1

−2 0 −1

 dP
dF
dE

 ,
so that time T has dimensions PF−1, and length L has di-
mensions F−1E, etc.

The only homomorphism from R> −→ Zp is the trivial
mapping that maps all elements to the unit element 0D =
(0, . . . , 0) ∈ Zp. Homomorphisms Zp −→ R> take the
form

(d1, . . . , dp) 7→
p∏

k=1

adk

k , (4)

where ak are fixed numbers in R>. Thus, an automorphism
of R> × Zp maps (c, d) to (e, f) with

e = c

p∏
k=1

adk

k , f =Md.

In principle, the mapping between two equivalent unit sys-
tems based on R> × Zp is defined a p-vector of positive



real numbers a = (a1, . . . , ap)
⊤ and an p × p integer ma-

trix with determinant ±1. This vector and matrix enables
the interoperability of the two unit systems. For two repre-
sentation systems with the same base dimensions Ak, an iso-
morphism between the two is defined simply by the n-vector
a = (a1, . . . , ap)

⊤. The numbers ak are simply conversion
factors, for example, converting metres to inches. We note
that degrees Kelvin and decrees Celsius are not related by
such a conversion factor.

3.5. Base units associated with the base dimensions

The base dimensions give a way of specifying attributes as-
sociated with a system and the counting algebra enables nu-
merical calculations associated with quantities. The role of
the base units is to specify, directly or indirectly, quantities
Qk whose representation rQk

is such that rQk
= (1C , ek),

where ek is the kth generator of the free Abelian group D.
For D = Zp, ek is the p-vector with one in the kth ele-
ment and zeros elsewhere. Thought of in this way, mea-
surement units are names of specific elements of R. In
the SI, the second is the name for (1, e1), the metre is the
name for (1, e2), the Newton is the name for (1, dN) where
dN = (−2, 1, 1, 0, 0, 0, 0)⊤, etc.

3.6. Conventional representation of measurements

The SI brochure [1, Section 5.4] and the NIST publication
on the use of the international system of units [16, Section
7] emphasise that the value of a quantity Q can be writ-
ten as Q = {Q}[Q] where {Q} is the numerical value and
[Q] is the (name of the) associated unit, and that {Q}[Q]
should be thought of the product of mathematical entities.
The statement L = 5 m implies {L} = 5 and [L] = m
and is equivalent to the statement L/m = 5. The represen-
tation of the measurement result Q as rQ ∈ R provides
a formal, mathematical realisation of the idea of a prod-
uct of a numerical value and a unit. Regarding m as the
name for (1C , e2) the ‘product’ 5 m is realised as the prod-
uct (5, e2) = ιC(5) ∗R ιD(e2) = (5, 0D) ∗R (1C , e2) of
elements or R.

4. Numerical calculations and R = C ×D

Current practice in numerical computing is usually imple-
mented in software in languages in which variables have
only a limited number of types: Boolean, integer, real (sin-
gle, double precision), complex, string, etc. In this section,
we look at issues in implementing numerical calculations
in which variables are represented in R = C × D, where
R = R × Zp. We use R rather than R > as we want to ac-
commodate differences of quantities with the same dimen-
sion.

4.1. Functions R −→ R

A function f : R −→ R defines a subset F = {(x, y) :
y = f(x)} of R × R. We assume that all functions
f : R −→ R involved have a fixed dimension defined by
(d, e) ∈ D ×D and are such that (x, d) 7→ (fC(x), e) ∈ R,
with fC : R −→ R. Usually, we will denote fC also by
f if there is no confusion. If f(x) is differentiable and has
dimension (d, e), the derivative f ′(x) = df/dx is a func-
tion of dimension (d, e−d). Similarly, the second derivative
f ′′(x) has dimension (d, e − 2d). It follows that the Taylor
expansion for f about x0 given by

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2

+
f ′′′(x0)

3!
(x− x0)

3 + · · ·

is consistent with the dimension constraints. In the same
vein, if p(x) is a model response function of dimension (d, e)
modelled as a polynomial p(x) = a0 + a1x+ a2x

2 + . . .+
anx

n, then the coefficients are such that a0 has dimension e,
a1 has dimension e− d, a2 dimension e− 2d, and so on.

In probability theory, a cumulative distribution function
(CDF) must have dimension of the form (d, 0D) since prob-
abilities are dimensionless. The corresponding probability
density function (PDF) is the derivative of the CDF and
therefore has dimension (d,−d).

We also consider multivariate functions f : Rn −→ R
that satisfy dimensional constraints. For example, suppose
z = f(x, y) = ax2 + bxy + cy2 is of fixed dimension
(d(x), d(y), d(z)) involving coefficients a, b and c, elements
of R. The dimensions of these coefficients must satisfy
d(a) = d(z) − 2d(x), d(b) = d(z) − d(x) − d(y) and
d(c) = d(z) − 2d(y) as elements of D = Zp. The par-
tial derivative function ∂f/∂x = 2ax + by has dimension
(d(x), d(y), d(z) − d(x)). Note that if πC(a) = πC(b) =
πC(c) = 1 as elements of R, while we can write f(x, y) =
x2 + xy + y2 as a function R2 −→ R, we cannot ignore the
coefficients regarding f as a function R2 −→ R.

4.2. Vector spaces and matrices

See also [8, 13]. We can construct the equivalent of vec-
tor spaces and mappings between vector spaces involving
the Cartesian product Rn = (R × Zp)n ∼= Rn × (Zp)n

where now we regard Rn as a vector space with inner prod-
uct ⟨x,y⟩ = x⊤y =

∑n
i=1 xiyi for x, y ∈ Rn. For

x, y ∈ Rn with associated dimension vectors d(x) and d(y)
in (Zp)n, we can only form the inner product z = ⟨x,y⟩R
if d(xi) + d(yi) = d(z) is constant, i = 1, . . . , n. We can
also consider matrices A ∈ Rm×n = Rm×n × (Zp)m×n

where c(A) is our usual concept of a real-valued m× n ma-
trix and d(A) is an m × n array of elements of Zp. For
n-vector x ∈ Rn, we can construct the matrix-vector prod-
uct y = Ax if we can form all the inner products ⟨ai,x⟩R,



where ai is the ith row of A. The dimensions associated
with A, x and y must satisfy d(aij) + d(xj) = d(yi),
j = 1, . . . , n, where aij = A(i, j). We can summarise this
constraint by d(A) = d(y) ∗D (−d(x⊤)) where the term on
the right is the outer ‘product’ of m × 1 vector of dimen-
sions d(y) with the 1 × n vector of dimensions −d(x⊤),
remembering that the group operation ∗D in Zp is given by
addition.

If A is a matrix with associated dimensions given by e ∗R
(−d⊤) thenA can act on vectors of dimension d+g = (d1+
g, d2+g, . . . , dn+g)

⊤ ∈ (Zp)n for any g ∈ Z. Note that the
dimensions ofA can also be expressed as ((e+h)∗R (d−h)
for h ∈ Z. A representation of such dimensions that removes
this degree of freedom in discussed in [13].

In standard matrix algebra involving matrices with real ele-
ments, if A ∈ Rm×n and B ∈ Rk×ℓ we can from the matrix
product C = AB if and only if n = k. For matrices with
elements in R, constraints relating to dimension are much
more binding. Suppose A ∈ Rm×n and B ∈ Rn×ℓ are such
that the dimensions of A and B are given by outer products:
d(A) = d ∗D e⊤ and d(B) = f ∗D g⊤. The matrix product
C = AB in R can be formed if d(ej) + d(fj) = h is con-
stant, j = 1, . . . , n, in which case, d(C) = h ∗D (d ∗D g⊤),
i.e., d(cij) = h+ d(di) + d(gj), i = 1, . . . , n, j = 1, . . . , ℓ.

The dimensional constraints on matrix-vector and matrix-
matrix multiplications have a significant bearing in what
we mean by the identity matrix and the inverse of a ma-
trix. In standard numerical linear algebra the n × n iden-
tity matrix I is such that for any n-vector x, Ix = x.
For dimensioned vectors, we can only form Ix if the di-
mensions conform. Suppose d is a n × 1 dimension vec-
tor and let x ∈ Rn be any n-vector with dimension d.
We would like an identity matrix Id to have the property
that Idx = x as elements of Rn. This property holds if
Id = (I,d ∗D (−d⊤)) ∈ Rn×n × (Zp)n×n. Furthermore,
IdId = Id and I⊤d = I−d.

Suppose A ∈ Rn×n has inverse B. If A = (A, e ∗R
(−d)⊤) ∈ Rn, set B = (B,d ∗R (−e⊤)). Then BA =
(I,d ∗R (−d)⊤) = Id so that B acts as the left inverse of
A in Rn. The product AB can only be formed if e = d, in
which case, AB = BA = Id.

4.3. Regression problems

Many data analysis problems in metrology involve finding
the best-fit model to data y = (y1, . . . , ym)⊤. Typically,
the model response may be a function ϕ(x,a) depending
on covariates x and parameters a = (a1, . . . , an)

⊤, and the
optimal values of the parameters [5] are found by minimising
some measure F (a,y), for example

F (a,y) =

m∑
i=1

f2(xi,a), fi = f(xi,a) = yi−ϕ(xi,a).

The Gauss-Newton algorithm can be used to perform this
least-squares minimisation [6]: given estimates of a, up-
dated estimates of a are given by a + p where p =
−(J⊤J)−1J⊤f . Here, J is the m × n Jacobian matrix of
partial derivatives Jij = ∂fi/∂ai and f = (f1, . . . , fm)⊤

evaluated at a. If J has QR factorisation [7] given by
J = QU , whereQ is anm×n orthogonal matrix andU is an
n× n upper-triangular matrix, then p solves Up = −Q⊤f .
We are interested in how these types of calculation can be
made if all quantities are represented in R = C × D rather
than just as real numbers.

Example: estimation of parameters associated with a
mass artefact

Suppose a cylindrical mass artefact is characterised by three
parameters a = (m, r, h)⊤ where m is its mass, r the cylin-
der radius and h the cylinder height. In addition to estimates
y1, y2 and y3 of these three parameters, we have two other
measurements, an estimate y4 of its volume v = πr2h and
an estimate y5 of its density d = m/v. An estimate of a us-
ing all five pieces of information can be found by minimising
F (a) =

∑5
i=1(yi − ϕi(a))

2 where ϕj(a) = aj , j = 1, 2, 3,
ϕ4(a) = πa22a3 and ϕ5 = a1(πa

2
2a3)

−1. Using standard
programming languages we can implement a Gauss-Newton
algorithm to perform this minimisation, regarding aj , yi and
ϕj(a) as real variables. However, as soon as we apply the
model constraints that a, y are members of R = C × D,
then the algorithm as it stands cannot be implemented since
F (a) involves adding a variable of dimension M2 to a vari-
able of dimension L2, etc. We can choose to ignore the di-
mension information by effectively projecting all variables
in R to C = R using πC . (Implementing the calculations
in a standard programming language essentially involves ap-
plying this ‘forgetful’ projection.) However, this defeats the
purpose of using the model constraints. A better approach is
as follows.

Least-squares optimisation arises often as maximum like-
lihood estimation for problems involving Gaussian noise.
Suppose we write the observation equations as yi ∈
N (ϕi(a), σ

2
i ), where σi has the same dimension as yi. Max-

imum likelihood estimates of a are found by minimising

F (a) =

5∑
i=1

f2i (a), fi(a) = zi − ψi(a),

where zi = yi/σi and ψi(a) = ϕi(a)/σi. Each sum-
mand function fi(a) is now dimensionless so that form-
ing F (a) is consistent with the model constraints relating
to dimensions. (Applying the same change of units to yi,
ϕi and σi means the F (a) is also invariant with respect
to choice of units.) The Jacobian matrix of partial deriva-
tives is such that the dimensions are homogeneous column-
wise: if aj has dimension vector dj then Jij has dimension
vector −dj , i = 1, . . . ,m. In fact d(J) is given by the
outer product d(J) = 0D ∗D (−d(a⊤). The matrix product



H = J⊤J is such that Hjk has dimension −dj − dk, i.e.,
d(H) = (−d(a)) ∗R (−d(a⊤)). H can act on vectors of
dimension d(a). If H has numerical inverse V ∈ Rn×n, set
V = (V, d(a) ∗R d(a)⊤) ∈ Rn×n which can act on vectors
of dimension −d(a). The vector J⊤f has dimension −d(a)
and p = −V J⊤f has dimension d(a), so that forming a+p
is consistent with the dimension constraints.

Suppose a QR factorisation approach J = QU is used to
determine the update step p. The orthogonal matrixQ can be
expressed as a product of 2×2 Givens rotations, for example.
The fact that all the elements of any column of J have the
same dimension means that each Givens rotation and hence
all the elements of Q are dimensionless. Correspondingly,
each element of the jth column of U has dimension −dj .
The vector g = −Q⊤f can be formed since both Q and f
(and hence g) are dimensionless. In terms of solving

u11 u12 u13 u14 u15
0 u22 u23 u24 u25
0 0 u33 u34 u35
0 0 0 u44 u45
0 0 0 0 u55



p1
p2
p3
p4
p5

 =


g1
g2
g3
g4
g5

 ,
for p, we have p5 = g5/u55 has dimension d5, p5 =
(g4−u45p5)/u44 and has dimension d4, recalling that u45p5
has dimension −d5 + d5 = 0, etc. In other words, the QR
factorisation approach can also be implemented in a way that
is consistent with the dimension constraints.

In standard numerical analysis, we would estimate the (un-
dimensioned) variance matrix Va associated with the fitted
parameters by Va = (J⊤J)−1. For m > n, a posterior
adjustment to this estimate is given by

V̂a = σ̂2(J⊤J)−1, σ̂2 =
1

m− n

∑
i

f2i ,

evaluated at the solution a, an estimate that takes into ac-
count the estimated noise associated with the observed data.
These variance matrix calculations can also be made for di-
mensioned variables with d(Va) = d(V ) = d(a) ∗D d(a⊤)
and d(σ̂) = 0D. The variance matrix V can also be com-
puted as U−1U−⊤ using the QR factorisation of J where
U−1 has dimension d ∗D 0D and U−⊤ has dimension
0D ∗R d⊤.

4.4. Law of propagation of uncertainty

Suppose f(a) is a multivariate function of dimensioned vari-
ables a with associated dimension vector d and f is such that
d(f(a)) = e. We assume that a has been estimated with as-
sociated variance matrix V with d(V ) = d ∗R d⊤. Given an
estimate of a, let g be the vector of sensitivity coefficients
with gj = ∂f(a)/∂aj . Then d(gj) = e − d(aj). The vari-
ance associated with f(a) is given by u2(f) = g⊤V g with
d(u2(f)) = 2e, where all matrix-vector calculations obey
the dimensional constraints. This calculation shows how the

law of propagation of uncertainty that underlies the GUM
uncertainty framework [2, 3] can be implemented on dimen-
sioned variables.

5. Discussion and concluding remarks

The examples above show that calculations that we routinely
undertake in the analysis of data can also be implemented in
a way that takes into account the dimensions and associated
units of the quantities through representing them inR. (With
care, the calculations can also be made invariant to chang-
ing the dimension and units using an isomorphism of R.)
Functional programming promotes the embedding of model
constraints into software. However, to embed model con-
straints relating to dimension it is also necessary to represent
the algebraic nature of the dimension constraints represented
here in terms of the free Abelian group Zp. This algebraic
element is missing from standard functional programming
environments but recent research has shown how the algebra
associated with dimensioned variables can be supported and
used to check programs, even those written in widely-used
languages such as MATLAB, through the use of auxiliary di-
rectives given in comments that enable variable dimensions
to be specified, propagated and checked [12, 13].

The model constraints defined by dimensioned variables
vastly reduces (but does not eliminate, of course) the scope
for making programming errors, including conceptual er-
rors, that are undetected by the compiler. The extension
of functional programming technologies to support dimen-
sioned variables could have a significant impact in promot-
ing trustworthy numerical computation.

Acknowledgements

This work was undertaken jointly by the Mathematically
Structured Programming Group of the University of Strath-
clyde and the National Physical Laboratory’s Data Science
department as part of Data Science’s Tools for Trustworthi-
ness National Measurement System (NMS) project 2023 –
2024. We thank NPL colleague Peter Harris for reviewing
this paper, and to Ian Smith, NPL, and Professor Neil Ghani,
Strathclyde, for input and support.

REFERENCES

[1] BIPM. The International System of Units (SI brochure (EN)):
9th edition, 2019, May 2019.

[2] JCGM 100. Evaluation of measurement data — Guide to the
expression of uncertainty in measurement. Joint Committee
for Guides in Metrology, 2008.

[3] JCGM 102. Evaluation of measurement data — Supplement
2 to the “Guide to the expression of uncertainty in measure-
ment” — extension to any number of output quantities. Joint
Committee for Guides in Metrology, 2011.

[4] Haskell Brooks Curry and Robert M. Feys. Combinatory
Logic Vol. 1. North-Holland Publishing Company, 1958.



[5] A. B. Forbes. Parameter estimation based on least squares
methods. In F. Pavese and A. B. Forbes, editors, Data model-
ing for metrology and testing in measurement science, pages
147–176, New York, 2009. Birkhäuser-Boston.

[6] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimiza-
tion. Academic Press, London, 1981.

[7] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns
Hopkins University Press, Baltimore, fourth edition, 2013.

[8] G. W. Hart. Multidimensional Analysis: Algebras and Sys-
tems for Science and Engineering. Springer, 1995.

[9] William Alvin Howard. The formulae-as-types notion of con-
struction. In Haskell Curry, Hindley B., Seldin J. Roger, and
P. Jonathan, editors, To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus, and Formalism. Academic Press,
1980.

[10] Joachim Lambek and Philip J. Scott. Introduction to Higher
Order Categorical Logic. Cambridge University Press, 1986.

[11] S. MacLane. Categories for the Working Mathematician.
Springer-Verlag, New York, 1971. Graduate Texts in Mathe-
matics, Vol. 5.

[12] C. McBride, G. Nakov, F. N. Forsberg, A. Videla, A. B.
Forbes, and K. Lines. LabMate: a prospectus for types for
MATLAB. In IMEKO World Congress, 26-29 August, 2024,
Hamburg, Germany, 2024. Submitted.

[13] C. McBride and F. Nordvall-Forsberg. Type systems for pro-
grams respecting dimensions. In F. Pavese, A. B. Forbes, N. F.
Zhang, and A. G. Chunovkina, editors, Advanced Mathemati-
cal Tools in Metrology, XII, pages 331–345, Singapore, 2022.
World Scientific.

[14] L. Nielsen. Evaluation of mass measurements in accordance
with the GUM. Metrologia, 51:S183, 2014.

[15] D. I. Spivak. Category Theory for Scientists. MIT Press,
Cambridge, Mass., 2013.

[16] A. Thompson and B. Taylor. NIST special publication 811:
Guide for the use of the international system of units (SI).
Technical report, National Institute of Standards and Tech-
nology, Gaithersburg, 2008.


