
Optimization Strategies for Integration Pattern Compositions
Daniel Ritter, Norman May

SAP SE
Walldorf (Baden), Germany

{firstname.lastname}@sap.com

Fredrik Nordvall Forsberg
University of Strathclyde

Glasgow, Scotland
fredrik.nordvall-forsberg@strath.ac.uk

Stefanie Rinderle-Ma
University of Vienna

Vienna, Austria
stefanie.rinderle-ma@univie.ac.at

ABSTRACT
Enterprise Application Integration is the centerpiece of current
on-premise, cloud and device integration scenarios. We describe
optimization strategies that help reduce the model complexity, and
improve the process execution using design time techniques. In
order to achieve this, we formalize compositions of Enterprise
Integration Patterns based on their characteristics, and propose
a realization of optimization strategies using graph rewriting. The
framework is successfully evaluated on a real-world catalog of
pattern compositions, containing over 900 integration scenarios.

CCS CONCEPTS
• Applied computing → Enterprise application integration;
• Information systems→ Data exchange;

KEYWORDS
Enterprise Application Integration, Enterprise Integration Patterns,
Optimization Strategies.

ACM Reference Format:
Daniel Ritter, NormanMay, Fredrik Nordvall Forsberg, and Stefanie Rinderle-
Ma. 2018. Optimization Strategies for Integration Pattern Compositions. In
DEBS ’18: The 12th ACM International Conference on Distributed and Event-
based Systems, June 25–29, 2018, Hamilton, New Zealand. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3210284.3210295

1 INTRODUCTION
Enterprise Application Integration (EAI) is the centerpiece of cur-
rent IT infrastructure and integration scenarios, and essentially
amounts to composing Enterprise Integration Patterns (EIPs) from
a catalog comprising the original patterns [23] and recent addi-
tions [37, 40]. This can result in complex models that are often
vendor-specific, informal and ad-hoc [37]; optimizing such integra-
tion processes is desirable, but hard. In most cases this is further
complicated by data aspects being absent in the model. As a con-
crete motivation for a formal framework for data-aware integration
process optimization, consider the following example: many or-
ganizations have started to connect their on-premise applications
such as Customer Relationship Management (CRM) systems with
cloud applications such as SAP Cloud for Customer (COD) using

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DEBS ’18, June 25–29, 2018, Hamilton, New Zealand
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5782-1/18/06. . . $15.00
https://doi.org/10.1145/3210284.3210295

Figure 1: SAP Hybris Cloud Replicate Material from SAP
Business Suite (a “hybrid integration” scenario).

integration processes similar to the one shown in Fig. 1. A CRM
Material is sent from the CRM system via EDI (more precisely SAP
IDOC transport protocol) to an integration process running on SAP
Cloud Platform Integration (SAP CPI)1. The integration process
enriches the message header (MSG.HDR) with additional infor-
mation based on a document number for reliable messaging (i.e.,
AppID), which allows redelivery of the message in an exactly-once
service quality [40]. The IDOC structure is then mapped to the
COD service description and sent to the COD receiver. Already
in this simple scenario an obvious improvement can be applied:
the data-independent Content Enricher and Message Translator
patterns [23] could be executed in parallel. This insight would per-
haps not be obvious without the data flow in the model, and leads
to questions such as the following: “are there other optimizations
that could also be applied, and how can the modeling be supported
by this?”. Currently these questions cannot be answered, since ap-
proaches for verification and static analysis of “realistic data-aware”
business and integration processes are missing, as recent surveys
on event data [1, 16], workflow management [27], and in particular
application integration [37] report. Hence, this work aims to fill
this gap, based on the following research questions:
RQ1 What are relevant optimization techniques for EAI pattern

compositions?
RQ2 How can pattern compositions be suitably formalized for

optimizations?
RQ3 How can optimization strategies be formally defined?
In this work, we develop a verification and static analysis frame-

work for applying and reasoning about optimizations of data-aware
integration patterns. Our main contribution is a graph-based rep-
resentation of integration patterns, so that optimizations can be
realized as graph rewriting rules. To show the feasibility of our
framework, we analyzed its use on a catalog of over 900 real-world

1SAP CPI, visited May 2018: https://api.sap.com/shell/discover. The pattern compo-
sitions in this catalog are represented in a BPMN model (e.g., [40]), and thus we
subsequently represent our examples in this way — this is also more expressive in
terms of message and data representation than the EIP icon notation [23].

https://doi.org/10.1145/3210284.3210295
https://doi.org/10.1145/3210284.3210295
https://api.sap.com/shell/discover

DEBS ’18, June 25–29, 2018, Hamilton, New Zealand D. Ritter, N. May, F. Nordvall Forsberg, and S. Rinderle-Ma

Table 1: Optimizations in related domains — horizontal search

Keyword hits selected Selection criteria Selected Papers
Business Process Optimization 159 3 data-aware processes survey [44], optimization patterns [31, 32]
Workflow Optimization 396 6 data-aware processes instance scheduling [2, 7, 43], scheduling and partitioning for in-

teraction [3], scheduling and placement [6], operator merge [22]
Data Integration Optimization 61 2 data-aware processes optimization,

(no schema-matching)
instance scheduling, parallelization [46], ordering, materialization,
arguments, algebraic [19]

Added n/a 8 expert knowledge business process [45], workflow survey [27, 28], data integration
[12], distributed applications [8, 9], EAI [35, 36]

Removed - 1 classification only [44]

Overall 616 18

integration scenarios. With our approach, we can show that 81%
of the original scenarios from 2015 and still up to 52% of the cur-
rent SAP CPI content from 2017 could be improved through a
parallelization of scenario parts. We stress that we use the word
“optimization” here in the sense of, e.g., an optimizing compiler: a
process which iteratively improves compositions, but gives no guar-
antee of optimality. Due to brevity, we focus on the common EAI
optimization objectives [23]: message throughput (on experimental
runtime benchmarks), pattern processing latency (on an abstract
cost model), and also runtime independent model complexity [42]
from the process modeling domain. Furthermore, we concentrate
on pattern compositions within one integration process (not to or
within message endpoints).

Methodology. Overall, we follow the design science research ap-
proach from Peffers et al. [33] to systematically analyze the state-of-
the-art. At first, we collect optimization techniques as optimization
strategies from related domains (answering RQ1) by conducting a
horizontal literature search based on Kitchenham [26]. We opt for
a high-level representation of pattern compositions as control flow
graphs [4] (where the nodes represent extended EIPs) with commu-
nication contracts. This allows our representation to specify data
and throughput aspects — which BPMN-based models cannot [40]
— whilst still modeling the composition logic of the patterns, rather
than their internal logic as in Petri Net-based models [17] (answer-
ing RQ2). We then formalize the optimization strategies based on
the contract graphs using graph rewriting techniques (answering
RQ3), and evaluate them on real-world pattern compositions.

Outline. In Sect. 2, we collect optimization techniques, identify
requirements for optimizing EIP compositions, and classify the
optimization strategies and optimization objectives (i.e., modeling
complexity, processing latency, message throughput). Our formal
model of pattern compositions is introduced in Sect. 3. Optimization
strategies are then formalized in Sect. 4, and evaluated on case
studies based on the objectives in Sect. 5. We discuss related work
in Sect. 6 and conclude in Sect. 7.

2 STATIC OPTIMIZATION STRATEGIES
In this section we survey recent attempts to optimize composed
EIPs, in order to motivate the need to formalize their semantics. As
a result, we derive three so far unexplored prerequisites R1–R3 for
optimizing compositions of EIPs.

2.1 Identifying optimization strategies
Since a formalization of the EAI foundations in the form of inte-
gration patterns for static optimization of “data-aware” pattern
processing is missing [37], we conducted a horizontal literature
search [26] to identify optimization techniques in related domains.
For EAI, the domains of business processes, workflow management
and data integration are of particular interest. The results of our
analysis are summarized in Tab. 1. Out of the resulting 616 hits,
we selected 18 papers according to the search criteria “data-aware
processes”, and excluded work on unrelated aspects. Table 2 lists the
optimization techniques, alreadymapped to EAI, and skipping those
techniques that do not provide solutions for our optimization ob-
jectives or within an integration process. This resulted in the seven
papers cited in the table. The mapping of techniques from related
domains to EAI was done by for instance taking the idea of pro-
jection push-downs [11, 19, 22, 31, 45] and deriving the early-filter
or early-mapping technique in EAI. We categorized the techniques
according to their impact (e.g., structural or process, data-flow) in
context of the objectives for which they provide solutions.

In the following subsections, we now briefly discuss the opti-
mization strategies listed in Tab. 2, in order to derive prerequisites
needed for optimizing compositions of EIPs. To relate to their prac-
tical relevance and coverage so far (in the form of evaluations on
“real-world” integration scenarios), we also discuss existing “data-
aware” message processing solutions for each group of strategies.

2.2 Process Simplification
We grouped together all techniques whose main goal is reduc-
ing model complexity (i.e., number of patterns) under the heading
of process simplification. The cost reduction of these techniques
can be measured by pattern processing time (latency, i.e., time re-
quired per operation) and model complexity metrics [42]. Process
simplification can be achieved by removing redundant patterns
like Redundant Subprocess Removal (e.g., remove one of two identi-
cal sub-flows), Combine Sibling Patterns (e.g., remove one of two
identical patterns), or Unnecessary Conditional Fork (e.g., remove
redundant branching). As far as we know, the only practical study
of combining sibling patterns can be found in Ritter et al. [36],
showing moderate throughput improvements. The simplifications
requires a formalization of patterns as a control graph structure
(R1), which helps to identify and deal with the structural change
representation. Previous work targeting process simplification in-
clude Böhm et al. [11] and Habib, Anjum and Rana [22], who use

Optimization Strategies for Integration Pattern Compositions DEBS ’18, June 25–29, 2018, Hamilton, New Zealand

Table 2: Optimization Strategies in context of the objectives

Strategy Optimization Throughput Latency Complexity Practical Studies
OS-1: Process
Simplification

Redundant Sub-process Removal [11] +/- + + -
Combine Sibling Patterns [11, 22] +/- + + ([36])
Unnecessary conditional fork [11, 45] (+) + + -

OS-2: Data Reduction Early-Filter [11, 19, 22, 31, 45] + +/- +/- [36]
Early-Mapping [11, 19, 22] + +/- +/- [36, 39]
Early-Aggregation [11, 19, 22] + +/- +/- [39]
Claim Check [11, 19] + +/- - -
Early-Split [36] + +/- - [36, 39]

OS-3: Parallelization Sequence to parallel [11, 31, 45, 46] + +/- - [35, 36]
Merge parallel sub-processes [11, 31, 45, 46] +/- + + [36]

+ = improvement, - = deterioration, +/- = no effect, (+) = slight improvement, (-) = slight deterioration.

evolutionary search approaches on workflow graphs, and Vrhovnik
et al. [45], who use a rule formalization on query graphs.

2.3 Data Reduction
The reduction of data can be facilitated by pattern push-down opti-
mizations of message-element-cardinality-reducing patterns, which
we call Early-Filter (for data; e.g., remove elements from themessage
content), Early-Mapping (e.g., apply message transformations), as
well as message-reducing optimization patterns like Early-Filter (for
messages; e.g., remove messages), Early-Aggregation (e.g., combine
multiple messages to fewer ones), Early-Claim Check (e.g., store
content and claim later without passing it through the pipeline), and
Early-Split (e.g., cut one large message into several smaller ones).
Measuring data reduction requires a cost model based on the charac-
teristics of the patterns, as well as the data and element cardinalities.
For example, the practical realizations for multimedia [39] and hard-
ware streaming [36] show improvements especially for early-filter,
split and aggregation, as well as moderate improvements for early-
mapping. This requires a formalization that is able to represent
data or element flow (R2). Data reduction optimizations target
message throughput improvements (i.e., processed messages per
time unit), however, some have a negative impact on the model
complexity. Previous work on data reduction include Getta [19],
who targets optimization techniques on relational algebra expres-
sions, and Niedermann, Radeschütz and Mitschang [31], who define
optimizations algorithmically for a graph-based model.

2.4 Parallelization
Parallelization of processes can be facilitated through transforma-
tions such as Sequence to Parallel (e.g., duplicate pattern or sequence
of pattern processing), or, if not beneficial, reverted, e.g., by Merge
Parallel. For example, good practical results have been shown for
vectorization [35] and hardware parallelization [36]. Therefore,
again, a control graph structure (R1) is required. Although the
main focus of parallelization is message throughput, heterogeneous
variants also improve latency. In both cases, parallelization requires
additional patterns, which negatively impacts the model complexity.
The opposite optimization of merging parallel processes mainly
improves the model complexity and latency. Previous work on pat-
tern parallelization include Zhang et al. [46], who defines a service
composition model, to which algorithmically defined optimizations
are applied.

2.5 Discussion
Due to our objectives and our focus on optimizations within a
process, the collection of optimizations in Tab. 2 is not complete.
For instance, we have not treated pattern placement optimizations
(pushing patterns to message endpoints, i.e., sender and receiver
applications), or optimizations that reduce interaction (helping to
stabilize the process). Besides control flow (as used in most of the
related domains), a suitable formalization must be able to represent
the control graph structure (R1) (including reachability and con-
nectedness properties) and the data element flow (R2) between
patterns (not within a pattern). Furthermore, the formalizationmust
allow verification of correctness (R3) on a pattern-compositional
level (i.e., each optimization produces a correct pattern composi-
tion), taking the inter-pattern data exchange semantics into account.
In contrast to the related work, we define a novel data-aspect rep-
resentation of the extended EIPs and guarantee correctness.

3 GRAPH-BASED PATTERN COMPOSITIONS
In this section, we introduce our formalization of pattern composi-
tions, and an abstract cost model for them. Such a formalization is
needed in order to talk about optimizations rigorously.

3.1 Integration Pattern Graphs
Summarizing the requirements R1–R3 collected in the previous
section, a suitable formalization of integration patterns is graph-
based, can represent the data element flow, and allows correctness
checking. Hence, we define an Integration Pattern Typed Graph
(IPTG) as an extended control flow graph [4] as follows. Let us first
fix some notation: a directed graph is given by a set of nodes P
and a set of edges E ⊆ P × P . For a node p ∈ P , we write •p =
{p′ ∈ P | (p′,p) ∈ E} for the set of direct predecessors of p, and p• =
{p′′ ∈ P | (p,p′′) ∈ E} for the set of direct successors of p.

Definition 3.1. An integration pattern typed graph (IPTG) is a
directed graph with set of nodes P and set of edges E ⊆ P × P ,
together with a function type : P → T , where T = {start, end,
message processor, fork, structural join, condition, merge, external
call}. An IPTG (P ,E, type) is correct if
• ∃ p1, p2 ∈ P with type(p1) = start and type(p2) = end;
• if type(p) ∈ {fork, condition} then | • p | = 1 and |p • | = n,
and if type(p) = join then | • p | = n and |p • | = 1;
• if type(p) ∈ {message processor, merge} then | • p | = 1 and
|p • | = 1;

DEBS ’18, June 25–29, 2018, Hamilton, New Zealand D. Ritter, N. May, F. Nordvall Forsberg, and S. Rinderle-Ma

• if type(p) ∈ {external call} then | • p | = 1 and |p • | = 2;
• The graph (P ,E) is connected and acyclic.

In the definition, we think of P as a set of extended EIPs that are
connected by message channels in E, as in a pipes and filter archi-
tecture. The function type records what type of pattern each node
represents. The first correctness condition says that an integration
pattern has at least one source and one target, while the next three
states the cardinality of the involved patterns coincide with the
in- and out-degrees of the nodes in the graph representing them.
The last condition states that the graph represents one integration
pattern, not multiple unrelated ones, and that messages do not loop
back to previous patterns.

To represent the data flow, i.e., the basis for the optimizations, the
control flow has to be enhanced with (a) the data that is processed
by each pattern, and (b) the data exchanged between the patterns in
the composition. The data processed by each pattern (a) is described
as a set of pattern characteristics, formally defined as follows:

Definition 3.2. A pattern characteristic assignment for an IPTG
(P ,E, type) is a function char : P → 2PC , assigning to each pattern
a subset of the set

PC = ({MC} × N × N) ∪
({ACC} × {ro, rw}) ∪
({MG} × B) ∪

({CND} × 2BExp) ,

where B is the set of Booleans, BExp the set of Boolean expressions,
and MC, CHG, MG, CND some distinct symbols.

The property and value domains in the definition are based on
the pattern descriptions in [23, 37], and could be extended if further
analysis required it. We briefly explain the intuition behind the
characteristics: the characteristic (MC,n,k) represents a message
cardinality of n:k , (ACC,x) the message access, depending on if
x is read-only ro or read-write rw, and the characteristic (MG,y)
represents whether the pattern is message generating depending
on the Boolean y. Finally (CND,X) represents the conditions for
the pattern collected in the set of Boolean expressions X .

Example 3.3. The characteristics of a content-based router CBR
is char(CBR) ={(MC, 1:1), (ACC, ro), (MG, false), (CND,{cnd1, . . . ,
cndn−1})}, because of the workflow of the router: it receives exactly
onemessage, then evaluates up ton−1 routing conditions cnd1 up to
cndn−1 (one for each outgoing channel), until a condition matches.
The original message is then rerouted read-only (in other words, the
router is not message generating) on the selected output channel,
or forwarded to the default channel, if no condition matches.

The data exchange between the patterns (b) is based on input
and output contracts (similar to data parallelization contracts in
[5]). These contracts specify how the data is exchanged in terms of
required message properties of a pattern during the data exchange,
formally defined as follows:

Definition 3.4. A pattern contract assignment for an IPTG (P ,E, type)
is a function contr : P → 2CPT × 2EL, assigning to each pattern a
subset of the set

CPT = {signed, encrypted, encoded} × {yes, no, any}

and a subset of the set

EL = MS × 2D

where MS = {HDR, PL,ATTCH}, and D is a set of data elements
(the concrete elements of D are not important, and will vary with
the application domain).

Each pattern will have an inbound and an outbound pattern
contract, describing the format of the data it is able to receive and
send respectively — the role of pattern contracts is to make sure
that adjacent inbound and outbound contracts match. The set CPT
in a contract represents integration concepts, while the set EL rep-
resents data elements and the structure of the message: its headers
(HDR,H), its payload (PL,Y) and its attachments (ATTCH,A).

Example 3.5. A content-based router is not able to process en-
crypted messages. Recall that its pattern characteristics included
a collection of routing conditions: these might require read-only
access to message elements such as certain headers h1 or payload
elements e1, e2. Hence the input contract for a router mentioning
these message elements is

inContr(CBR) = ({(encrypted, no)}, {(HDR, {h1}), (PL, {e1, e2})}) .

Since the router forwards the original message, the output contract
is the same as the input contract.

Definition 3.6. Let (C,E) ∈ 2CPT × 2EL be a pattern contract,
and X ⊆ 2CPT × 2EL a set of pattern contracts. Write XCPT =

{C ′ | (∃E ′) (C ′,E ′) ∈ X } and XEL = {E
′ | (∃C ′) (C ′,E ′) ∈ X }.

We say that(C,E) matches X , in symbols match((C,E),X), if the
following condition holds:

(∀(p,x) ∈ C)(x = any ∨ (∀C ′ ∈ XCPT)(∃(p′,y) ∈ C ′)(
p = p′ ∧ (y = any ∨ y = x)

))
∧

(∀(m,Z) ∈ E)(Z ⊆ ⋃
(m,Z ′)∈∪XEL

Z ′
)

We are interested in an inbound contract Kin matching the out-
bound contracts K1, . . . ,Kn of its predecessors. In words, this is the
case if (i) for all integration concepts that are important to Kin, all
contracts Ki either agree, or at least one of Kin or Ki accepts any
value; and (ii) together, K1, . . . ,Kn supply all the message elements
that Kin needs.

Since pattern contracts can refer to arbitrary message elements,
a formalization of an integration pattern can be quite precise. On
the other hand, unless care is taken, the formalization can easily
become specific to a particular pattern composition. In practice, it
is often possible to restrict attention to a small number of impor-
tant message elements (see Example 3.8 below), which makes the
formalization manageable.

Putting everything together, we formalize pattern compositions
as integration pattern typed graphs with pattern characteristics
and inbound and outbound pattern contracts for each pattern:

Definition 3.7. An integration pattern contract graph (IPCG) is a
tuple

(P ,E, type, char, inContr, outContr)

where (P ,E, type) is an IPTG, char : P → 2PC is a pattern charac-
teristics assignment, and inContr, outContr : P → 2CPT × 2EL are

Optimization Strategies for Integration Pattern Compositions DEBS ’18, June 25–29, 2018, Hamilton, New Zealand

pattern contract assignments, called the inbound and outbound con-
tract assignment respectively. It is correct, if the underlying IPTG
(P ,E, type) is correct, and inbound contracts matches the outbound
contracts of the patterns’ predecessors, i.e.

(∀p)(p = start ∨match(inContr(p), {outContr(p′) | p′ ∈ •p})
)
.

Two IPCGs are isomorphic if there is a bijective function be-
tween their patterns that preserves edges, types, characteristics and
contracts.

Example 3.8. Figures 2(a) and 2(b) show IPCGs representing an
excerpt of the motivating example from the introduction. Figure 2(a)
represents the IPCG of the original scenario with a focus on the
contracts, and Fig. 2(b) denotes an already improved composition
showing the characteristics and giving an indication on the pattern
latency. In Fig. 2(a), the input contract inContr(CE) of the content
enricher pattern CE requires a non-encrypted message and a pay-
load element DOCNUM. The content enricher makes a query to get an
application ID AppID from an external system, and appends it to the
message header. Hence the output contract outContr(CE) contains
(HDR, {AppID}). The content enricher then emits a message that
is not encrypted or signed. A subsequent message translator MT
requires the same message payload, but does not care about the
appended header. It adds another payload RcvID to the message.
Comparing inbound and outbound pattern contracts for adjacent
patterns, we see that this is a correct IPCG.

One improvement of this composition is depicted in Fig. 2(b),
where the independent patternsCE andMT have been parallelized.
To achieve this, a read-only structural fork with channel cardinality
1:n in the form of a multicastMC has been added. The inbound and
outbound contracts ofMC are adapted to fit into the composition.
After the concurrent execution of CE and MT , a join router JR
brings the messages back together again and feeds the result into
an aggregator AGG that restores the format that ADPTr expects.
We see that the resulting IPCG is still correct, so this would be a
sound optimization.

3.2 Abstract Cost Model
In order to decide if an optimization is an improvement or not,
we want to associate abstract costs to integration patterns. We do
this on the pattern level, similar to the work on data integration
operators [10]. The cost of the overall integration pattern can then
be computed as the sum of the cost of its constituent patterns. Costs
are considered parameterized by the cardinality of data inputs |dini |
(1 ≤ i ≤ n, if the pattern has in-degree n), data outputs |doutj |
(1 ≤ j ≤ m, if the pattern has out-degreem), and external resource
data sets |dr |. The costs can also refer to the pattern characteristics.

Definition 3.9. A cost assignment for an IPCG (P ,E, type, char,
inContr, outContr) is an function cost(p) : Nn × Nk × Nr → Q for
each p ∈ P , where p has in-degree n, out-degree k and r external
connections. The cost cost(G) : NN × NK × NR → Q of an IPCG
pattern graph G = (P ,E, type,pc, ic,oc) with a cost assignment,
where N is the sum of the in-degrees of its patterns, K the sum of
their out-degrees, and R the sum of their external connections, is
defined to be the sum of the costs of its constituent patterns:

cost(G)(din,dout,dr) =
∑
p∈P

cost(p)(|din(p)|, |dout(p)|, |dr (p)|)

Table 3: Abstract costs of relevant patterns

Pattern p Abstract Cost cost(p) Factors

Content-based Router [23]
∑n−1
i=0 |din,i |

2 n=#channel conditions, half of them
evaluated in average

Message Filter [23] |din | input data condition |din |
Aggregator [23] 2 × |din | +

|din |+|dr |
avд(len(seq)) correlation, and completion condi-

tions |din |, aggregation function
|din |+|dr |

avд(len(seq)) and length of a se-
quence length(seq) >= 2, and (trans-
acted) resource dr

Claim Check [23] 2 × |dr | resource insert and get |dr |
Splitter [23] |dout | -
Multicast, JoinRouter [37]

∑n
i=0 cost(procuniti) costs of processing units

cost(procuniti), e.g., threading
in software, for n channels

Content Filter [23] |dout | output data creation |dout |
Mapping [23] |din | + |dout | output data creation |dout | from in-

put data |din |
Content Enricher [23] |din |+ |dr |+ |dout | request message creation on |din |,

resource query |dr |, response data
enrich |dout |

External Call [37] |dout | + |din | request |dout | and reply data |din |
Receive [23] |din | input data |din |
Send [23] |dout | output data |dout |

where we suggestively have written |din(p)| for the projection from
the tuple din corresponding to p, similarly for |dout(p)| and |dr (p)|.

We have defined the abstract costs of the patterns discussed in
this work in Tab. 3 — these will be used in the evaluation in Sect. 5.
We now explain the reasoning behind them. Routing patterns such
as content based routers, message filters and aggregators mostly
operate on the input message, and thus have an abstract cost related
to its element cardinality |din |. For example, the abstract cost of the

content-based router is cost(CBR) =
∑n−1
i=0 |din,i |

2 , since it evaluates
on average n−1

2 routing conditions on the input message. More
complex routing patterns such as aggregators evaluate correlation
and completion conditions, as well as an aggregation function on
the input message, and also on sequences of messages of a certain
length from an external resource. Hence the cost of an aggrega-
tor is cost(AGG) = 2 × |din | +

|din |+ |dr |
avд(len(seq)) . In contrast, message

transformation patterns like content filters and enrichers mainly
construct an output message, hence their costs are determined
by the output cardinality |dout |. For example, content enrichers
create a request message from the input message with cost |din |,
conducts an optional resource query |dr |, and creates and enriches
the response with cost |dout |. Finally, the cost of message creation
patterns such as external calls, receivers, and senders arise from
costs for transport, protocol handling, and format conversion, as
well as decompression. Hence the cost depends on the element
cardinalities of input and output messages |din |, |dout |.

Example 3.10. We return to the claimed improved composition
in Example 3.8. The latency of the compositionG1 in Fig. 2(a), calcu-
lated from the constituent pattern latencies, is cost(G1) = tCE+tMT .
The latency improvement potential given by switching to the com-
position G2 in Fig. 2(b) is given by cost(G2) = max(tCE , tMT) +

tMC + t JR + tAGG . Obviously it is only beneficial to switch if
cost(G2) < cost(G1), and this condition depends on the concrete
values involved. At the same time, the model complexity increases
by three nodes and edges.

DEBS ’18, June 25–29, 2018, Hamilton, New Zealand D. Ritter, N. May, F. Nordvall Forsberg, and S. Rinderle-Ma

(a) IPCG from the motivating example (b) IPCG after “sequence to parallel” optimization

Figure 2: An IPCG of an excerpt of the motivating example.

4 OPTIMIZATION STRATEGY REALIZATION
In this section we formally define the optimizations from the dif-
ferent strategies identified in Tab. 2 in the form of a rule-based
graph rewriting system. This gives a formal framework in which
different optimizations can be compared. We begin by describing
the graph rewriting framework, and subsequently apply it to define
the optimizations.

4.1 Graph Rewriting
Graph rewriting provides a visual framework for transforming
graphs in a rule-based fashion. A graph rewriting rule is given by
two embeddings of graphs L ←↩ K ↪→ R, where L represents the
left hand side of the rewrite rule, R the right hand side, and K their
intersection (the parts of the graph that should be preserved by
the rule). A rewrite rule can be applied to a graph G after a match
of L in G has been given as an embedding L ↪→ G; this replaces
the match of L in G by R. The application of a rule is potentially
non-deterministic: several distinct matches can be possible [14].
Visually, we represent a rewrite rule by a left hand side and a right
hand side graph colored green and red: green parts are shared and
represent K , while the red parts are to be deleted in the left hand
side, and inserted in the right hand side respectively. For instance,
the following rewrite rule moves the node P1 past a fork by making
a copy in each branch, changing its label from c to c ′ in the process:

Formally, the rewritten graph is constructed using a double-pushout
(DPO) [15] from category theory. We use DPO rewriting since rule
applications are side-effect free (e.g., no “dangling” edges) and local
(i.e., all graph changes are described by the rules). We additionally
use Habel and Plump’s relabeling DPO extension [21] to facilitate
the relabeling of nodes in partially labeled graphs. In Fig. 2, we
showed contracts and characteristics in dashed boxes, but in the
rules that follow, we will represent them as (schematic) labels inside
the nodes for space reasons.

In addition, we also consider rewrite rules parameterized by
graphs, where we draw the parameter graph as a cloud (see e.g.,
Fig. 3(a) for an example). A cloud represents any graph, sometimes
with some side-conditions that are stated together with the rule.
When looking for a match in a given graph G, it is of course suffi-
cient to instantiate clouds with subgraphs of G — this way, we can
reduce the infinite number of rules that a parameterized rewrite
rule represents to a finite number. Parameterized rewrite rules can
formally be represented using substitution of hypergraphs [34] or
by !-boxes in open graphs [25]. Since we describe optimization
strategies as graph rewrite rules, we can be flexible with when and
in what order we apply the strategies. We apply the rules repeat-
edly until a fixed point is reached, i.e., when no further changes
are possible, making the process idempotent. Each rule application
preserves IPCG correctness in the sense of Definition 3.7, because
input contracts do not get more specific, and output contracts re-
main the same. Methodologically, the rules are specified by pre-
conditions, change primitives, post-conditions and an optimization
effect, where the pre- and post-conditions are implicit in the appli-
cability and result of the rewriting rule.

4.2 OS-1: Process Simplification
We first consider the process simplification strategies from Sect. 2
OS-1 to OS-3 that mainly strive to reduce the model complexity
and latency.

4.2.1 Redundant sub-process. This optimization removes redun-
dant copies of the same sub-process within a process.

(a) Redundant sub-process (b) Combine sibling patterns

Figure 3: Rules for redundant sub-process and combine sib-
ling patterns.

Optimization Strategies for Integration Pattern Compositions DEBS ’18, June 25–29, 2018, Hamilton, New Zealand

Change primitives: The rewriting is given by the rule in Fig. 3(a),
where SG1 and SG2 are isomorphic pattern graphs with in-degree
n and out-degreem. In the right hand side of the rule, theCE nodes
add the context of the predecessor node to the message in the form
of a content enricher pattern, and theCBR nodes are content-based
routers that route the message to the correct recipient based on the
context introduced by CE. The graph SG ′1 is the same as SG1, but
with the context introduced by CE copied along everywhere.
Effect: The optimization is beneficial for model complexity when
the isomorphic subgraphs contain more than n +m nodes, where n
is the in-degree andm the out-degree of the isomorphic subgraphs.
The latency reduction is by the factor of subgraphs minus the
latency introduced by the n extra nodesCE andm extra nodesCBR.

4.2.2 Combine sibling patterns. Sibling patterns have the same
parent node in the pattern graph (e.g., they follow a non-conditional
forking pattern) with channel cardinality of 1:1. Combining them
means that only one copy of a message is traveling through the
graph instead of two — for this transformation to be correct in
general, the siblings also need to be side-effect free, i.e., no external
calls, although this is not captured by our correctness criteria.
Change primitives: The rule is given in Fig. 3(b), where SG1 and
SG2 are isomorphic pattern graphs, and F is a fork.
Effect: Themodel complexity and latency are reduced by the model
complexity and latency of SG2.

4.3 OS-2: Data Reduction
Now, we consider data reduction optimization strategies, which
mainly target improvements of the message throughput (incl. reduc-
ing element cardinalities). These optimizations require that pattern
input and output contracts are regularly updated with snapshots
of element data sets ELin and ELout from live systems (cf. Sect. 3),
e.g., from experimental measurements through benchmarks [38].

4.3.1 Early-Filter. A filter pattern can be moved to or inserted
prior to some of its successors to reduce the data to be processed.
The following types of filters have to be differentiated:
• A message filter removes messages with invalid or incom-
plete content. It can be used to prevent exceptional situations,
and thus improves stability.
• A content filter removes elements from messages, thus re-
duces the amount of data passed to subsequent patterns.

(a) Early Filter (b) Early Mapping

Figure 4: Rules for early-filter and early-mapping.

Change primitives: The rule is given in Fig. 4(a), where P3 is
either a content or message filter matching the output contracts of
P1 and the input contract of P2, removing the data not used by P2.

Effect: The message throughput increases by the ratio of the num-
ber of reduced data elements that are processed per second, unless
limited by the throughput of the additional pattern.

4.3.2 Early-Mapping. A mapping that reduces the number of
elements in a message can increase the message throughput.
Change primitives: The rule is given in Fig. 4(b), where P3 is an
element reducing message mapping compatible with both SG2, P4,
and P1, SG2, and where P4 does not modify the elements mentioned
in the output contract of P3. Furthermore P5 is a content filter,
which ensures that the input contract of P4 is satisfied.
Effect: The message throughput for the subgraph subsequent to
the mapping increases by the ratio of the number of unnecessary
data elements processed.

4.4 OS-3: Parallelization
Parallelization optimization strategies increase message through-
put. Again, these optimizations require experimentally measured
message throughput statistics, e.g., from benchmarks [38].

4.4.1 Sequence to parallel. Abottleneck sub-sequencewith chan-
nel cardinality 1:1 can also be handled by distributing its input and
replicating its logic. The parallelization factor is the average mes-
sage throughput of the predecessor and successor of the sequence
divided by two, which denotes the improvement potential of the
bottleneck sub-sequence. The goal is to not overachieve the mean
of predecessor and successor throughput with the improvement
to avoid iterative re-optimization. Hence the optimization is only
executed, if the parallel sub-sequence reaches lower throughput
than their minimum.

(a) Sequence to parallel (b) Heterogeneous sequence to parallel

Figure 5: Rules for sequence to parallel variants.

Change primitives: The rule is given in Fig. 5(a), where SSQ1 is a
bottleneck sub-sequence, P2 a fork node, P3 a join router, and each
SSQ ′k is a copy of SSQ1, for 1 ≤ k ≤ n. The parallelization factor n
is a parameter of the rule.
Effect: The message throughput improvement rate depends on
the parallelization factor n, and the message throughput of the
balancing fork and join router on the runtime. For a measured
throughput t of the bottleneck sub-sequences, the throughput can
be improved to n × t ≤ average of the sums of the predecessor and
successor throughput, while limited by the upper boundary of the
balancing fork or join router.

4.4.2 Heterogeneous Parallelization. Aheterogeneous paralleliza-
tion consists of parallel sub-sequences that are not isomorphic. In
general, two subsequent patterns Pi and Pj can be parallelized, if
the predecessor pattern of Pi fulfills the input contract of Pj , Pi be-
haves read-only with respect to the data element set of Pj , and the

DEBS ’18, June 25–29, 2018, Hamilton, New Zealand D. Ritter, N. May, F. Nordvall Forsberg, and S. Rinderle-Ma

Figure 6: Pattern composition evaluation pipeline.

combined outbound contracts of Pi and Pj fulfill the input contract
of the successor pattern of Pj .
Change primitives: The rule is given in Fig. 5(b), where the se-
quential sub-sequence parts SSQ1, .., SSQn can be parallelized, P3 is
a parallel fork, P4 is a join router, and P5 is an aggregator that waits
for messages from all sub-sequence part branches before emitting
a combined message that fulfills the input contract of P2.
Effect: Synchronization latency can be improved, but the model
complexity increases by 3. The latency improves from the sum
of the sequential pattern latencies to the maximal latency of all
sub-sequence parts plus the fork, join, and aggregator latencies.

5 EVALUATION
In this section, we apply the optimizations to integration processes
from a commercial cloud integration system in a quantitative anal-
ysis, and exemplify the results by two real-world case studies.

5.1 Quantitative Analysis
We applied the optimization strategies OS-1–3 to 627 integration
scenarios from the 2017 standard content of the SAP CPI (called ds17
below), and compared with 275 scenarios from 2015 (called ds15).
Our goal is to show the applicability of our approach to real-world
integration scenarios, as well as the scope and trade-offs of the
optimization strategies. The comparison with a previous content
version features a practical study on content evolution. To analyze
the difference between different scenario domains, we grouped
the scenarios into the following categories [37]: On-Premise to
Cloud (OP2C), Cloud to Cloud (C2C), and Business to Business
(B2B). Since hybrid integration scenarios such as OP2C target the
extension or synchronization of business data objects, they are
usually less complex. In contrast native cloud application scenarios
such as C2C or B2B mediate between several endpoints, and thus
involve more complex integration logic [37]. The process catalog
also contained a small number of simple Device to Cloud scenarios;
none of them could be improved by our approach.
Setup: Construction and analysis of IPCGs For the analysis,
we constructed an IPCG for each integration scenario following the
workflow sketched in Fig. 6. The integration scenarios are stored
as process models in a BPMN-like notation [40] (similar to Fig. 1).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

all op2c c2c b2b misc.

Av
er

ag
e

nu
m

be
r

of
 p

at
te

rn
s

pe
r

sc
en

ar
io

ds15
ds17

Figure 7: Pattern reduction per scenario.

The process models reference data specifications such as schemas
(e.g., XSD, WSDL), mapping programs, selectors (e.g., XPath) and
configuration files. For every pattern used in the process mod-
els, runtime statistics are available from benchmarks [38]. The data
specifications are picked up from the 2015 content archive and from
the current 2017 content catalog, while the runtime benchmarks
are collected using the open-source integration system Apache
Camel [24]2 as used in SAP CPI. The mapping and schema informa-
tion is automatically mined and added to the patterns as contracts,
and the rest of the collected data as pattern characteristics. For each
integration scenario and each optimization strategy, we determine
if the strategy applies, and if so, if the cost is improved. This analy-
sis runs in about two minutes in total for all 902 scenarios on our
workstation.

We now discuss the improvements for the different kinds of
optimization strategies identified in Sect. 2.
Improved Model Complexity: Process Simplification (OS-1).
The relevant metric for the process simplification strategies from
OS-1 is the model complexity, i.e. the average number of pattern
reductions per scenario, shown in Fig. 7.
Results. Although all scenarios were implemented by integration
experts, who are familiar with the modeling notation and the un-
derlying runtime semantics, there is still a small amount of patterns
per scenario that could be removed without changing the execution
semantics. On average, the content reduction for the content from
2015 and 2017 was 1.47 and 2.72 patterns/IPCG, respectively, with
significantly higher numbers in the OP2C domain.
Conclusions. (1) Even simple process simplifications are not always
obvious to integration experts in scenarios represented in a control-
flow-centric notation (e.g., current SAP CPI does not use BPMN
Data Objects to visualize the data flow); and (2) the need for process
simplification does not seem to diminish as integration experts gain
more experience.
Improved Bandwidth: Data Reduction (OS-2). Data reduction
impacts the overall bandwidth and message throughput [36]. To
evaluate data reduction strategies from OS-2, we leverage the data
element information attached to the IPCG contracts and charac-
teristics, and follow their usages along edges in the graph, similar

2All measurements were conducted on a HP Z600 workstation, equipped with two
Intel X5650 processors clocked at 2.67GHz with a 12 cores, 24GB of main memory,
running a 64-bit Windows 7 SP1 and a JDK version 1.7.0, with 2GB heap space.

Optimization Strategies for Integration Pattern Compositions DEBS ’18, June 25–29, 2018, Hamilton, New Zealand

 0

 200

 400

 600

 800

 1000

 1200

all op2c c2c misc.

N
um

be
r

of
 d

at
a

el
em

en
ts

 p
er

 s
ce

na
rio

Used Elements ds15
Unused Elements ds15
Used Elements ds17
Unused Elements ds17

(a) Used vs. unused data elements

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

all op2c c2c misc.

Ab
st

ra
ct

 c
os

ts
 b

as
ed

 o
n

da
ta

 c
ar

di
na

lit
ie

s
pe

r
sc

en
ar

io

Cost savings ds15
Cost savings ds17

(b) Savings in abstract costs on unused data elements

Figure 8: Unused elements in integration scenarios.

to “ray tracing” algorithms [20]. We collect the data elements that
are used or not used, where possible — we do not have sufficient
design time data to do this for user defined functions or some of
the message construction patterns, such as request-reply. Based on
the resulting data element usages, we calculate two metrics: the
comparison of used vs. unused elements in Fig. 8(a), and the savings
in abstract costs on unused data elements in Fig. 8(b).
Results. There is a large amount of unused data elements per sce-
nario for the OP2C scenarios; these are mainly web service com-
munication and message mappings, for which most of the data
flow can be reconstructed. This is because the predominantly used
EDI and SOA interfaces (e.g., SAP IDOC, SOAP) for interoperable
communication with on-premise applications define a large set of
data structures and elements, which are not required by the cloud
applications, and vice versa. In contrast, C2C scenarios are usually
more complex, and mostly use user defined functions to transform
data, which means that only a limited analysis of the data element
usage is possible.

When calculating the abstract costs for the scenarios with unused
fields, there is an immense cost reduction potential for the OP2C
scenarios as shown in Fig. 8(b). This is achieved by adding a content
filter to the beginning of the scenario, which removes unused fields.
This results in a cost increase |din | = #unused elements for the
content filter, but reduces the cost of each subsequent pattern up
to the point were the elements are used.
Conclusions. (3) Data flows can best be reconstructed when design
time data based on interoperability standards is available; and (4) a
high number of unused data elements per scenario indicates where
bandwidth reductions are possible.
Improved Latency: Parallelization (OS-3). For the sequence-to-
parallel optimization strategies from OS-3, the relevant metric is the
processing latency of the integration scenario. Because of the uncer-
tainty in determining whether a parallelization optimization would
be beneficial, we first report on the classification of parallelization
candidates in Fig. 9(a). We then report both the improvements ac-
cording to our cost model in Fig. 9(b), as well as the actual measured
latency in Fig. 9(c).
Results. Based on the data element level, we classify scenario can-
didates as parallel, definitely non parallel, or potentially
parallel in Fig. 9(a). The uncertainty is due to sparse information.
From the 2015 catalog, 81% of the scenarios are classed as parallel,
or potentially parallel, while the number for the 2017 catalog

is 53%. In both cases, the OP2C and B2B scenarios show the most
improvement potential. Figure 9(b) shows the selection based on
our cost model, which supports the pre-selection of all of these
optimization candidates. The actual, average improvements per im-
pacted scenario are shown in Fig. 9(c). The average improvements
of up to 230 milliseconds per scenario must be understood in the
context of the average runtime per scenario, which is 1.79 seconds.
We make two observations: (a) the cost of the additional fork and
join constructs in Java are high compared to those implemented
in hardware [36], and the improvements could thus be even better,
and (b) the length of the parallelized pattern sequence is usually
short: on average 2.3 patterns in our scenario catalog.
Conclusions. (5) The parallelization requires low cost fork and join
implementations; and (6) better runtime improvements might be
achieved for scenarios with longer parallelizable pattern sequences.

5.2 Case Studies
We apply, analyze and discuss the proposed optimization strategies
in the context of two case studies: the Replicate Material on-premise
to cloud scenario from Fig. 1, as well as an SAP eDocument invoicing
cloud to cloud scenario. These scenarios are part of the SAP CPI
standard, and thus several users (i.e., SAP’s customers) benefit
immediately from improvements. For instance, we additionally
implemented a content monitor pattern [37] that allowed analysis
of the SAP CPI content. This showed theMaterial Replicate scenario
was used by 546 distinct customers in 710 integration processes
copied from the standard into their workspace — each one of these
users is affected by the improvement.
Replicate Material (revisited). Recall from Sect. 1 that the Repli-
cate Material scenario is concerned with enriching and translating
messages coming from a CRM before passing them on to a Cloud
for Customer service, as in Fig. 1. As already discussed, the content
enricher and the message translator can be parallelized according
to the sequence to parallel optimization from OS-3. The original
and resulting IPCGs are shown in Fig. 2(a) and 2(b). No throughput
optimizations apply.
Latency improvements. The application of this optimization can be
considered, if the latency of the resulting parallelized process is
smaller than the latency of the original process, i.e. if

cost(MC) +max(cost(CE), cost(MT)) + cost(JR) + cost(AGG)

< cost(CE) + cost(MT)

DEBS ’18, June 25–29, 2018, Hamilton, New Zealand D. Ritter, N. May, F. Nordvall Forsberg, and S. Rinderle-Ma

 0

 50

 100

 150

 200

 250

all op2c b2b c2c misc.

N
um

be
r

of
 s

ce
na

rio
s

Parallel ds15
Potentially Parallel ds15
Non Parallel ds15
Parallel ds17
Potentially Parallel ds17
Non Parallel ds17

(a) Parallelization scenario candidates

 0

 50

 100

 150

 200

 250

all op2c b2b c2c misc.Im
pr

ov
em

en
ts

 a
cc

or
di

ng
 t

o
es

tim
at

ed
 a

bs
tr

ac
t

co
st

s
in

 m
s

Parallel ds15
Potentially Parallel ds15
Parallel ds17
Potentially Parallel ds17

(b) Optimized scenarios based on costs

 0

 50

 100

 150

 200

 250

all op2c b2b c2c misc.

La
te

nc
y

im
pr

ov
em

en
ts

 p
er

 s
ce

na
rio

 in
 m

s

Parallel ds15
Potentially Parallel ds15
Parallel ds17
Potentially Parallel ds17

(c) Actual latency improvements

Figure 9: OS-3 “Sequence to parallel” optimization candidates on (a) integration flows, (b) optimization selection based on
abstract cost model, and (3) actual latency improvements.

Subtractingmax(cost(CE), cost(MT)) from both sides of the inequal-
ity, we are left with

cost(MC) + cost(JR) + cost(AGG) < min(cost(CE), cost(MT))

If we assume that the content enricher does not need to make an
external call, its abstract cost becomes cost(CE)(|din |, |dr |) = |din |,
and plugging in experimental values from a pattern benchmark [38],
we arrive at the inequality (with latency costs in seconds)

0.01 + 0.002 + 0.005 ≮ min(0.005, 0.27)

which tells us that the optimization is not beneficial in this case
— the additional overhead is larger than the saving. However, if
the content enricher does use a remote call, cost(CE)(|din |, |dr |) =
|din | + |dr |, and the experimental values now say cost(CE) = 0.021.
Hence the optimization is worthwhile, as

0.01 + 0.002 + 0.005 < min(0.021, 0.27) .

Model Complexity. Following Sánchez-González et al. [42], we mea-
sure the model complexity as the node count. Hence, in this case,
the optimization increases the complexity by three.
Conclusions. (7) The pattern characteristics are important when
deciding if an optimization strategy should be applied (e.g., local vs.
remote enrichment); and (8) there are goal conflicts between the
different objectives, as illustrated by the trade-off between latency
reduction and increasing model complexity.
eDocuments: Italy Invoicing. The Italian government accepts
electronic invoices from companies, as long as they follow reg-
ulations — they have to be correctly formatted, signed, and not
be sent in duplicate. Furthermore, these regulations are subject to
change. This can lead to an ad-hoc integration process such as in
Fig. 10 (simplified). Briefly, the companies’ Fattura Electronica is
used to generate a factorapa document with special header fields
(e.g., Paese, IdCodice), then the message is signed and sent to the
authorities, if it has not been sent previously. The multiple authori-
ties respond with standard Coglienza, Risposta acknowledgments,
that are transformed to a SendInvoiceResponse. We transformed the
BPMN model to an IPCG, tried to apply optimizations, and created
a BPMN model again from the optimized IPCG.

Our heuristics for deciding in which order to try to apply differ-
ent strategies are “simplification before parallelization” and “struc-
ture before data”, since this seems to enable the largest number
of optimizations. Hence we first try to apply OS-1 strategies: the

combine siblings rule matches the sibling Message Signers, since
the preceding content-based router is a fork. (The signer is also
side-effect free, so applying this rule will not lead to observably
different behavior.) Next we try OS-3 strategies. Although heteroge-
neous parallelization matches for the CE and the Message Encoder,
it is not applied since

cost(MC) + cost(JR) + cost(AGG) ≮ min(cost(CE), cost(ME)),

i.e., the overhead is too high, due to the low-latency, local CE. Finally,
the early-filter strategy from OS-2 is applied for the Content Filter,
inserting it between the Content Enricher and the Message Encoder.
No further strategies can be applied. The resulting integration
process translated back from IPCTG to BPMN is shown in Fig. 11.
Conclusions. (9) The application order OS-1, OS-3, OS-2 seems most
beneficial (“simplification before parallelization”, “structure before
data”); (10) an automatic translation from IPCGs to concepts like
BPMN could be beneficial for connecting with existing solutions.

6 RELATEDWORK
We presented related optimization techniques in Sect. 2. We now
briefly situate our work within the context of other formalizations,
beyond the already discussed BPMN [40] and PN [17] approaches.
Enterprise Application Integration. Similar to the BPMN and
PN notations, several domain-specific languages (DSLs) have been
developed that describe integration scenarios. Apart from the EIP
icon notation [23], there is also the Java-based Apache Camel
DSL [24], and the UML-based Guaraná DSL [18]. However, none of
these languages aim to be optimization-friendly formal integration
scenario representations. Conversely, we do not strive to build an-
other integration DSL. Instead we claim that all of the integration
scenarios expressed in such languages can be formally represented
in our formalism, so that optimizations can be determined that can
be used to rewrite the scenarios.

There is work on formal representations of integration patterns,
e.g. Mederly et al. [29] represents messages as first-order formulas
and patterns as operations that add and delete formulas, and then
applies AI planning to find an process with a minimal number of
components. While this approach shares the model complexity
objective, our approach applies to a broader set of objectives and
optimization strategies. For the verification of service-oriented
manufacturing systems, Mendes et al. [30] uses “high-level” Petri

Optimization Strategies for Integration Pattern Compositions DEBS ’18, June 25–29, 2018, Hamilton, New Zealand

Figure 10: Country-specific invoicing (potential improvements as BPMN Group.)

Figure 11: Invoice processing from Fig. 10 after application of strategies OS-1–3.

nets as a language instead of integration patterns, similar to the
approach of Fahland and Gierds [17].
Business ProcessManagement. Early algorithmic work by Sadiq
and Orlowska [41] applied reduction rules to workflow graphs for
the visual identification of structural conflicts (e.g., deadlocks) in

business processes. Compared to process control graphs, we use
a similar base representation, which we extend by pattern charac-
teristics and data contracts. Furthermore, we use graph rewriting
for optimization purposes. In Cabanillas et al. [13], the structural
aspects are extended by a data-centered view of the process that

DEBS ’18, June 25–29, 2018, Hamilton, New Zealand D. Ritter, N. May, F. Nordvall Forsberg, and S. Rinderle-Ma

allows to analyze the life cycle of an object, and check data compli-
ance rules. Although this adds a view on the required data, it does
not propose optimizations for the extended EIPs. The main focus is
rather on the object life cycle analysis of the process.

7 CONCLUSIONS
This work addresses an important shortcoming in EAI research,
namely the lack of optimization strategies, and the informality of de-
scriptions of pattern compositions and optimizations (cf. RQ1–RQ3).
We approached the questions by compiling a catalog of optimization
strategies from the literature. We then developed a formalization
of pattern compositions in order to precisely define optimizations,
which we evaluated on data sets containing in total over 900 real
world integration scenarios, and two brief case studies. We con-
clude that formalization and optimizations are relevant even for
experienced integration experts (conclusions 1–2), with interesting
choices (conclusions 3–4, 6), implementation details (conclusions 5,
10) and trade-offs (conclusions 7–9).

In further work, we plan to incorporate dynamic aspects into
the formalization of patterns, for a more precise cost semantics. In
addition, purely data related techniques like message indexing, fork
path re-ordering and merging of conditions can be analyzed for
their effects. Finally, multi-objective optimizations and heuristics
for graph rewriting on the process level have to be further studied.

ACKNOWLEDGMENTS
We thank Jonas Kandels for implementation support, and the anony-
mous reviewers for suggestions and comments.

REFERENCES
[1] S. Abiteboul, M. Arenas, P. Barceló, M. Bienvenu, D. Calvanese, C. David, R. Hull,

E. Hüllermeier, B. Kimelfeld, L. Libkin, W. Martens, T. Milo, F. Murlak, F. Neven,
M. Ortiz, T. Schwentick, J. Stoyanovich, J. Su, D. Suciu, V. Vianu, and K. Yi.
Research directions for principles of data management (abridged). SIGMOD
Record, 45(4):5–17, 2017.

[2] K. Agrawal, A. Benoit, L. Magnan, and Y. Robert. Scheduling algorithms for
linear workflow optimization. In IPDPS, pages 1–12, 2010.

[3] S. G. Ahmad, C. S. Liew, M. M. Rafique, E. U. Munir, and S. U. Khan. Data-
intensive workflow optimization based on application task graph partitioning in
heterogeneous computing systems. In IEEE BdCloud, pages 129–136, 2014.

[4] F. E. Allen. Control flow analysis. SIGPLAN Notices, 5(7):1–19, 1970.
[5] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke. Nephele/

PACTs: a programming model and execution framework for web-scale analytical
processing. In SoCC, pages 119–130, 2010.

[6] A. Benoit, M. Coqblin, J.-M. Nicod, L. Philippe, and V. Rehn-Sonigo. Throughput
optimization for pipeline workflow scheduling with setup times. In Euro-Par
Workshops, pages 57–67, 2012.

[7] L. F. Bittencourt and E. R. M. Madeira. Hcoc: a cost optimization algorithm for
workflow scheduling in hybrid clouds. Journal of Internet Services andApplications,
2(3):207–227, 2011.

[8] A. Böhm. Building Scalable, Distributed Applications with Declarative Messaging.
PhD thesis, University of Mannheim, 2010.

[9] A. Böhm and C. Kanne. Demaq/transscale: Automated distribution and scalability
for declarative applications. Information Systems, 36(3):565–578, 2011.

[10] M. Böhm, D. Habich, W. Lehner, and U. Wloka. Systemübergreifende Kostennor-
malisierung für Integrationsprozesse. In BTW, pages 67–86, 2009.

[11] M. Böhm, D. Habich, S. Preissler, W. Lehner, and U. Wloka. Cost-based vector-
ization of instance-based integration processes. Information Systems, 36(1):3–29,
2011.

[12] M. Böhm, U. Wloka, D. Habich, and W. Lehner. Model-driven generation and
optimization of complex integration processes. In ICEIS (1), pages 131–136, 2008.

[13] C. Cabanillas, M. Resinas, A. Ruiz-Cortés, and A. Awad. Automatic generation of
a data-centered view of business processes. In CAiSE, pages 352–366. Springer,
2011.

[14] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. Springer, 2006.

[15] H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An algebraic ap-
proach. In Switching and Automata Theory, pages 167–180, 1973.

[16] D. Eyers, A. Gal, H.-A. Jacobsen, and M. Weidlich. Integrating Process-Oriented
and Event-Based Systems (Dagstuhl Seminar 16341). Dagstuhl Reports, 6(8):21–64,
2017.

[17] D. Fahland and C. Gierds. Analyzing and completing middleware designs for
enterprise integration using coloured petri nets. In CAiSE, pages 400–416, 2013.

[18] R. Z. Frantz, A. M. Reina Quintero, and R. Corchuelo. A domain-specific language
to design enterprise application integration solutions. International Journal of
Cooperative Information Systems, 20(02):143–176, 2011.

[19] J. R. Getta. Static optimization of data integration plans in global information
systems. In ICEIS, pages 141–150, 2011.

[20] A. S. Glassner. An introduction to ray tracing. Elsevier, 1989.
[21] A. Habel and D. Plump. Relabelling in graph transformation. In ICGT, volume

2505, pages 135–147. Springer, 2002.
[22] I. Habib, A. Anjum, R. Mcclatchey, and O. Rana. Adapting scientific workflow

structures using multi-objective optimization strategies. TAAS, 8(1):4, 2013.
[23] G. Hohpe and B. Woolf. Enterprise integration patterns: Designing, building, and

deploying messaging solutions. Addison-Wesley, 2004.
[24] C. Ibsen and J. Anstey. Camel in Action. Manning, 2010.
[25] A. Kissinger, A. Merry, and M. Soloviev. Pattern graph rewrite systems. In DCM,

pages 54–66, 2012.
[26] B. Kitchenham. Procedures for performing systematic reviews. Keele, UK, Keele

University, 33(2004):1–26, 2004.
[27] G. Kougka and A. Gounaris. Optimization of data-intensive flows: Is it needed?

Is it solved? In DOLAP, pages 95–98. ACM, 2014.
[28] G. Kougka, A. Gounaris, and A. Simitsis. The many faces of data-centric workflow

optimization: A survey. CoRR, abs/1701.07723, 2017.
[29] P. Mederly, M. Lekavỳ, M. Závodský, and P. Navra. Construction of messaging-

based enterprise integration solutions using AI planning. In CEE-SET, pages
16–29, 2009.

[30] J. M. Mendes, P. Leitão, A. W. Colombo, and F. Restivo. High-level petri nets for
the process description and control in service-oriented manufacturing systems.
International Journal of Production Research, 50(6):1650–1665, 2012.

[31] F. Niedermann, S. Radeschütz, and B. Mitschang. Business process optimization
using formalized patterns. BIS, 2011.

[32] F. Niedermann and H. Schwarz. Deep business optimization: Making business
process optimization theory work in practice. In Enterprise, Business-Process and
Information Systems Modeling, pages 88–102. Springer, 2011.

[33] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A design science
research methodology for information systems research. JMIS, 24(3):45–77, 2007.

[34] D. Plump and A. Habel. Graph unification and matching. In TAGT, pages 75–88,
1994.

[35] D. Ritter. Database processes for application integration. In BICOD, pages 49–61,
2017.

[36] D. Ritter, J. Dann, N. May, and S. Rinderle-Ma. Hardware accelerated application
integration processing: Industry paper. In ACM DEBS, pages 215–226, 2017.

[37] D. Ritter, N. May, and S. Rinderle-Ma. Patterns for emerging application integra-
tion scenarios: A survey. Information Systems, 67:36 – 57, 2017.

[38] D. Ritter, N. May, K. Sachs, and S. Rinderle-Ma. Benchmarking integration pattern
implementations. In ACM DEBS, pages 125–136, 2016.

[39] D. Ritter and S. Rinderle-Ma. Toward application integration with multimedia
data. In IEEE EDOC, pages 103–112, 2017.

[40] D. Ritter and J. Sosulski. Exception handling in message-based integration
systems and modeling using BPMN. Int. J. Cooperative Inf. Syst, 25(2):1–38, 2016.

[41] W. Sadiq and M. E. Orlowska. Analyzing process models using graph reduction
techniques. Information systems, 25(2):117–134, 2000.

[42] L. Sánchez-González, F. García, J. Mendling, F. Ruiz, and M. Piattini. Prediction of
business process model quality based on structural metrics. In ER, pages 458–463,
2010.

[43] T. Tirapat, O. Udomkasemsub, X. Li, and T. Achalakul. Cost optimization for
scientific workflow execution on cloud computing. In ICPADS, pages 663–668,
2013.

[44] K. Vergidis, A. Tiwari, and B. Majeed. Business process analysis and optimization:
Beyond reengineering. IEEE Transactions on SMC, Part C, 38(1):69–82, 2008.

[45] M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang, V. Markl, A. Maier, and T. Kraft.
An approach to optimize data processing in business processes. In VLDB, pages
615–626, 2007.

[46] P. Zhang, Y. Han, Z. Zhao, and G. Wang. Cost optimization of cloud-based data
integration system. In WISA, pages 183–188, 2012.

	Abstract
	1 Introduction
	2 Static Optimization Strategies
	2.1 Identifying optimization strategies
	2.2 Process Simplification
	2.3 Data Reduction
	2.4 Parallelization
	2.5 Discussion

	3 Graph-based Pattern Compositions
	3.1 Integration Pattern Graphs
	3.2 Abstract Cost Model

	4 Optimization Strategy Realization
	4.1 Graph Rewriting
	4.2 OS-1: Process Simplification
	4.3 OS-2: Data Reduction
	4.4 OS-3: Parallelization

	5 Evaluation
	5.1 Quantitative Analysis
	5.2 Case Studies

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

