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Abstract—We present two seemingly different definitions of
constructive ordinal exponentiation, where an ordinal is taken
to be a transitive, extensional, and wellfounded order on a set.
The first definition is abstract, uses suprema of ordinals, and
is solely motivated by the expected equations. The second is
more concrete, based on decreasing lists, and can be seen as
a constructive version of a classical construction by Sierpiński
based on functions with finite support. We show that our two
approaches are equivalent (whenever it makes sense to ask the
question), and use this equivalence to prove algebraic laws and
decidability properties of the exponential. Our work takes place
in the framework of homotopy type theory, and all results are
formalized in the proof assistant Agda.

I. INTRODUCTION

In classical mathematics and set theory, ordinals have rich
and interesting structure. How much of this structure can
be developed in a constructive setting, such as homotopy
type theory? This is not merely a question of mathematical
curiosity, as classical ordinals have powerful applications
as tools for establishing consistency of logical theories [1],
proving termination of processes [2], and justifying induction
and recursion [3], [4], which would all be valuable to have
available in constructive mathematics and proof assistants
based on constructive type theory. There are many constructive
approaches to ordinals, such as ordinal notation systems [5],
Brouwer trees [6], or wellfounded trees with finite or countable
branchings [7], [8], to name a few. In this paper, we follow
the Homotopy Type Theory Book [9] and consider ordinals
as order types of well ordered sets, i.e., an ordinal is a type
equipped with an order relation having certain properties.

Ordinals have an arithmetic theory that generalizes the
one of the natural numbers. Classically, arithmetic operations
are defined by case distinction and transfinite recursion. For
addition and multiplication, we have:

α+ 0 = α

α+ (β + 1) = (α+ β) + 1

α+ λ = supβ<λ (α+ β) (if λ is a limit)

α× 0 = 0

α× (β + 1) = (α× β) + α

α× λ = supβ<λ (α× β) (if λ is a limit)

Similarly, exponentiation is classically defined by:

α0 = 1

αβ+1 = αβ × α

αλ = supβ<λ α
β (if λ is a limit, α ̸= 0)

0β = 0 (if β ̸= 0)

(†)

We can recognize the equations from arithmetic on the
natural numbers in the cases of 0 and successors β+1, extended
by a case for limit ordinals, which ensures that each operation
is continuous in the second argument. However, while the
situation might seem familiar, it is in fact constructively very
different: for general well orders, such a case distinction on
whether an ordinal is zero, a successor, or a limit, is available
if and only if the law of excluded middle holds. Constructively,
the above equations are thus not a valid definition of the
arithmetic operations on ordinals. However, they are still a
reasonable specification of how the operations should behave.

For addition and multiplication, there are well known
alternative constructions based on a clear visual intuition, using
disjoint unions and Cartesian products of order types, respec-
tively (cf. the related work paragraph below and especially
Escardó’s work [10]). These are well behaved constructively —
for example, one can prove that they satisfy the specification
on the left. On the other hand, subtraction (and, similarly,
division) is inherently non-constructive for the approach of
ordinals as well ordered sets [10, Ordinals.AdditionProperties].
For exponentiation, most classical textbooks on ordinals [11],
[12], [13], [14], [15], [16] simply employ the non-constructive
definition by cases. Notable exceptions are the classical
monograph by Sierpiński [17] and the constructive work
by Grayson [18], [19], which we will return to shortly. In
fact, going back all the way to Cantor’s original writings on
ordinals [20], addition and multiplication are defined “explicitly”
in §14, whereas exponentiation (with base α > 1) is defined
by case distinction and transfinite recursion in §18.

Perhaps one reason why constructive ordinal exponentiation
has so far been underdeveloped is that the operation is
somewhat non-intuitive, even in a classical setting. For example,
for the first infinite ordinal ω = supn:N n, continuity in the
exponent (cf. the specification (†)) implies that 2ω = ω — an
equation very different from what one might expect from, for
example, cardinal exponentiation. This in turn rules out an
understanding of ordinal exponentiation in terms of categoryAuthor’s Accepted Manuscript. Released under the Creative Commons
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theoretic exponentials: even though the collection of ordinals
forms a posetal category where the morphisms are functions
with additional structure, exponentiation is not right adjoint to
multiplication. Even worse, as we will prove in Proposition 4,
any exponentiation operation which is continuous and fully
satisfies the specification (†) is inherently non-constructive:
such an operation can be shown to exist if and only if the law
of excluded middle holds. However, we will show that we can
still define exponentiation αβ whenever α ≥ 1.

We present two approaches to ordinal exponentiation in
homotopy type theory:

• An abstract construction based on suprema of ordinals
and transfinite recursion, which can be proven to satisfy
the specification (†) when α ≥ 1, i.e., when α has a least
element (Theorem 9). This construction makes use of set
quotients and the univalence axiom.

• A concrete construction via decreasing lists, inspired by
Sierpiński’s [17] classical construction. We show that it
satisfies the specification (†) when α has a trichotomous
least element, i.e., an element ⊥ : α such that either
x = ⊥ or ⊥ < x for every element x : α (Theorem 20).
This definition works in plain Martin-Löf type theory,
but still requires the univalence axiom to prove many
properties about it.

These two approaches have different advantages. For ex-
ample, the abstract construction allows convenient proofs of
algebraic laws such as αβ+γ = αβ × αγ using the universal
property of the supremum as a least upper bound, while the
concrete definition using decreasing lists is easily seen to
preserve properties such as trichotomy or decidable equality.

Our main result is that the two approaches are actually
equivalent (Theorem 24). Thanks to univalence (representation
independence), we can transport properties along this equiv-
alence and get the best of both worlds. We thus show that
ordinal exponentiation can be defined in homotopy type theory
in a way that works very well, even constructively; and this
may be seen as an example where univalence helps for work
that happens purely on the level of sets.

In a classical setting, where the specification (†) fully defines
exponentiation, our definitions are necessarily equivalent to
the usual definition by case distinction, and everything we do
works for this standard definition. Therefore, our development
is a generalization of, rather than an alternative to, the existing
theory of classical ordinal exponentiation.

In this paper, we heavily use the technique of calculating
with initial segments. This approach to working with ordinals is
perhaps underused, and we aim to demonstrate its effectiveness.
It is based on the fact that an ordinal (or element of an ordinal)
is fully characterized by what its predecessors are — a property
known as extensionality. The predecessors of an ordinal α are,
by definition, the initial segments of α. Therefore, whenever we
suggest a new construction with ordinals, we also characterize
the initial segments of the resulting ordinal (cf. Propositions 7
and 19). The approach is reminiscent of how, in homotopy
type theory, one often characterizes the path spaces of types
that one needs in constructions.

Related Work
Ordinals in homotopy type theory: In the context of

homotopy type theory, the definition of ordinals as transitive,
extensional, wellfounded orders was suggested in the Homotopy
Type Theory Book [9]. Escardó [10] developed a substantial
Agda formalization of ordinal theory with many new results,
on which our formalization is based. We are also building on
our own previous work [21], where we gave implementations
of addition and multiplication for the ordinals we consider in
this paper, but notably no implementation of exponentiation.

In our previous work [21], we further compared the notion
of ordinals considered here with other notions of constructive
ordinals, namely Cantor Normal Forms [20], [22] and Brouwer
trees [23], [24]. In a classical setting, these are simply different
representations for ordinals, and one can (as long as it makes
sense size-wise) convert between them. Constructively, the
different notions split apart as there is a trade-off between
decidability and the ability to calculate unrestricted limits
or suprema. While Cantor Normal Forms enjoy excellent
decidability properties, they only allow the calculation of
finite limits or suprema. For Brouwer trees, some properties
are decidable, but only very specific infinite limits can be
calculated. The ordinals considered in this paper enjoy no
decidable properties but allow the formation of arbitrary (small)
suprema. They are also the most general ones, in the sense
that Cantor Normal Forms and Brouwer trees (as well as other
notions of ordinals) can be viewed as a subtype of the type of
transitive extensional wellfounded orders.

Exponentiation as lists: In a classical setting, the realization
of ordinal exponentiation as finitely supported functions is
well known. Further, in such a setting, the implementation of
exponentiation ωβ with base ω as decreasing lists of ordered
pairs (n, b) is also known to proof theorists working on ordinal
analysis. For example, we first came across this idea in Setzer’s
survey article [25]. Hancock [26] discusses the cases of 2β

and ωβ , but admits that the definition in terms of finite support
is “rather non-constructive, and admittedly rather hard to
motivate”.

A construction of ordinal exponentiation as decreasing lists
for an arbitrary base α was suggested by Grayson in his PhD
thesis [18], with the relevant part published as Grayson [19].
Compared to our construction, Grayson’s does not include
the condition that the base has a trichotomous least element.
Grayson’s construction, which comes without any proofs, is
thus significantly more general — but also, unfortunately,
incorrect in this generality. The special case that works is
equivalent to our suggestion (cf. Section VI). Grayson further
claims that his construction satisfies a “recursion equation”,
which cannot hold in the generality claimed. However, when
read as a recursive definition, it yields precisely our abstract
construction with the caveat that Grayson uses setoids which
we avoid thanks to univalence.

Mechanization of ordinal exponentiation: As far as we know,
this is the first paper that comes with a mechanization of con-
structive ordinal exponentiation in a proof assistant. However,
others have done so in a classical logic, where the definition

2



is considerably more straightforward. For example, the Lean
mathematical library [27] defines ordinal exponentiation by the
case distinction (†), while Blanchette, Popescu and Traytel [28]
use classical logic to encode exponentials as functions with
finite support in Isabelle/HOL. However, we emphasize that
we do not give a different, or “yet another” definition in this
paper — in a classical setting, it is not hard to show that
all these definitions coincide, including ours. Rather, we give
a definition that improves on the existing ones, in the sense
that it is well behaved in the absence of classical logic and
(depending on the setting) may be better from the point of
view of computation.

Outline and Contributions
We start by recalling how ordinals are defined in homotopy

type theory in Section II, where we also discuss their basic prop-
erties and introduce a precise specification of exponentiation.
In Section III, we give a first constructive implementation of
exponentiation αβ using an abstract approach via suprema, and
prove it well behaved when the base is positive, i.e., when α ≥ 1
(Theorem 9). In Section IV, we give a second constructive
implementation via decreasing lists, which is more concrete. We
show that it is well behaved when the base has a trichotomous
least element (Theorem 20). In Section V, we then compare
the two approaches: in Theorem 24, we show that they are in
fact equivalent when the base has a trichotomous least element
(and thus in particular is positive). Further, we explain how the
concrete implementation in the form of decreasing lists can be
seen as a type of normal forms for the abstract implementation
(Theorem 30). Section VI discusses Grayson’s suggestion of
ordinal exponentiation via decreasing lists and the connection
with our work. Finally, in Section VII, we explore what is not
possible to achieve constructively for ordinal exponentiation,
by giving several properties that hold in the classical theory
of ordinals, but are in fact all constructively equivalent to the
law of excluded middle.

Formalization
All our results have been formalized in the Agda proof assis-

tant, and type check using Agda 2.7.0.1. Our formalization [29]
is building on, and part of the TypeTypology development [10]
by Escardó and contributors. Our Agda code is available
on GitHub at https://github.com/martinescardo/TypeTopology
and archived on Zenodo as doi:10.5281/zenodo.15461750.
A browseable HTML rendering of all Agda verified results
in this paper is available at https://www.cs.bham.ac.uk/~mhe/
TypeTopology/Ordinals.Exponentiation.Paper.html. Throughout
the paper, the symbol Ó is a clickable link to the corresponding
machine-checked statement in that HTML file.

We found Agda extremely valuable when developing the
decreasing list approach to exponentiation, as its intensional
nature makes for rather combinatorial arguments that we found
challenging to rigorously check on paper.

Setting and Notation
We work in intensional Martin-Löf type theory extended

with the univalence axiom and set quotients. We also use

function extensionality tacitly, as it follows from the univalence
axiom. In particular, everything we do works in homotopy type
theory as introduced in the “HoTT book” [9]. Some of the
constructions work in a more minimalistic setting, and our Agda
formalization (but not this paper) tracks assumptions explicitly.
The univalence axiom is not only used to conveniently transport
properties between equivalent representations, but is also crucial
for proving equations of ordinals.

Regarding notation, we follow the aforementioned book.
In particular, the identity type is denoted by a = b, while
definitional (a.k.a. judgmental) equality is written a ≡ b. In the
paper, we keep universe levels implicit. Recall that a type A is
called a proposition if it has at most one inhabitant, i.e., if x = y
holds for all x, y : A. A type A is called a set if all its identity
types a = b for a, b : A are propositions. We write LEM for the
law of excluded middle, which claims that P or not P holds
for every proposition P , i.e., LEM :≡ ∀(P : Prop).P + ¬P .
Since we work constructively, we do not assume LEM, but will
explicitly flag its appearance. Our main use of LEM is to show
that other assumptions imply it, and thus have no chance of
being constructively provable — they are constructive taboos.

II. ORDINALS IN HOMOTOPY TYPE THEORY

We recall that an ordinal in homotopy type theory is a type α
equipped with a proposition-valued binary relation <, called the
(strict) order, that is transitive, extensional and wellfounded [9,
§10.3]. Extensionality means that two elements x, y : α are
equal if and only if they have the same predecessors, i.e.,
x = y if and only if z < x ⇐⇒ z < y holds for all z : α.
As observed by Escardó [10, Ordinals.Type], this implies that
the underlying type of an ordinal is a set. Wellfoundedness
is defined via an accessibility predicate, but is equivalent to
transfinite induction: given a type family P over α, to prove
P (x) for all x : α, it suffices to prove P (x) for all x : α
assuming that P (y) already holds for y < x, i.e.,

∀(x : α).
(
∀(y : α).y < x → P (y)

)
→ P (x)

implies ∀(x : α).P (x). Simple examples of ordinals include
the finite types n = {0 < 1 < . . . < n− 1}, and the infinite
ordinal ω with underlying type N and order relation given by
the usual order on N. Any proposition P can be viewed as
an ordinal in a trivial way, where the order is chosen to be
constantly empty. Moreover, the type Ω of truth values, i.e. the
subtype of the universe containing exactly the propositions, is
an ordinal, where P < Q is defined to mean ¬P ×Q.

Given an element a of an ordinal α, the initial segment
α ↓ a determined by a is the ordinal with underlying type

α ↓ a :≡ Σ(x : α). x < a

and with order relation inherited from α [9, after Ex 10.3.18].
This basic construction will prove absolutely fundamental in
this paper, and we will often work with ordinals by characteriz-
ing their initial segments, see Eqs. (1) to (3) and Propositions 7
and 19.
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A. The Ordinal of Ordinals
An ordinal equivalence from α to β is given by an

equivalence f : α → β between the underlying types that
is order preserving, and whose inverse f−1 : β → α is also
order preserving (a property that follows classically, but not
constructively). We note that any ordinal equivalence is also
order reflecting. Thanks to univalence, the identity type α = β
is equivalent to the type of ordinal equivalences from α to β [10,
Ordinals.Equivalence], allowing us to construct identifications
between ordinals via equivalences.

The type Ord of small ordinals is itself a (large) ordinal [9,
Thm. 10.3.20] by setting

α < β :≡ Σ(b : β). α = β ↓ b,

i.e., α is strictly smaller than β if α is an initial segment of β
determined by some (necessarily unique) element b : β; it is
worth noting that this generalizes the order on Ω discussed
above. We also note that proving extensionality for this order
uses univalence.

Moreover, Ord forms a poset by defining α ≤ β as any of the
following equivalent conditions [10] (see also [30, Prop. 9]):

(i) γ < α implies γ < β for all small ordinals γ;
(ii) for every a : α, there exists a (necessarily unique) b : β

with α ↓ a = β ↓ b;
(iii) there is a simulation f : α → β,

where a simulation is an order preserving function such that for
all x : α and y < f(x) we have x′ < x with f(x′) = y. Note
that ≤ is proposition-valued (in particular, (iii) is a proposition:
there is at most one simulation between any two ordinals).
Moreover, the relation is antisymmetric: if α ≤ β and β ≤ α,
then α = β, a fact that we will often use tacitly. The equivalence
between (ii) and (iii) is due to the first fact in the following
lemma.

Lemma 1 ([10, Ordinals.Maps] Ó).
(i) Simulations preserve initial segments: if f : α → β is a

simulation, then β ↓ f a = α ↓ a.
(ii) Simulations are injective and order reflecting.

(iii) Surjective simulations are precisely ordinal equivalences.

In a classical metatheory, every order preserving function
induces a simulation, so that classically α ≤ β holds if and only
if there exists an order preserving function α → β. However,
as we will see in Section VII, this is not true constructively.
Compared to mere order preserving maps, simulations between
ordinals are rather well behaved (as witnessed by Lemma 1).

An element ⊥ of an ordinal α is least if ⊥ ⪯ a for all a
in α, where x ⪯ y holds if u < x implies u < y for all u : α.
Note that for the ordinal of ordinals Ord, the order α ⪯ β
coincides with the order α ≤ β via characterization (i) above.
We remark that ⊥ is the least element of α if and only if there
are no elements x in α with x < ⊥, equivalently if and only
if the map ⋆ 7→ ⊥ : 1 → α is a simulation.

B. Addition and Multiplication
As is well known (cf. [10, Ordinals.Arithmetic] and [21,

Thm. 61]), addition of two ordinals is given by taking the

coproduct of the underlying types, keeping the original order
in each component, and additionally requiring that all elements
in the left component are smaller than anything in the right
component. Initial segments of a sum of ordinals can be
calculated as follows:

(α+ β) ↓ inl a = α ↓ a;

(α+ β) ↓ inr b = α+ (β ↓ b).
(Ó 1)

Multiplication of two ordinals is given by equipping the
Cartesian product of the underlying types with the reverse
lexicographic order, i.e., (a′, b′) < (a, b) holds if either b′ < b,
or b′ = b and a′ < a. Initial segments of products of ordinals
can be calculated as follows:

(α× β) ↓ (a, b) = α× (β ↓ b) + (α ↓ a). (Ó 2)

If b′ < b, the ordinal equivalence witnessing (2) sends (a′, b′) to
inl(a′, b′), and if b′ = b and a′ < a, then (a′, b′) is sent to inr a′.
Note that neither addition nor multiplication are commutative,
since e.g., ω + 1 ̸= 1+ ω and ω × 2 ̸= 2× ω.

C. Suprema
The poset of (small) ordinals has suprema (least upper

bounds) of arbitrary families indexed by small types [31,
Thm. 5.8]. Given a family of ordinals F• : I → Ord,
its supremum supF• can be constructed as the total space
Σ(i : I). Fi, quotiented by the relation that identifies (i, x)
and (j, y) if Fi ↓ x = Fj ↓ y. We thus have a simulation
[i,−] : Fi ≤ supF• for each i : I . Moreover, these maps
are jointly surjective and can be used to characterize initial
segments of the supremum [30, Lem. 15]: for every y : supF•

there exists some i : I and x : Fi such that

y = [i, x] and (supF•) ↓ y = Fi ↓ x. (Ó 3)

We stress that the existence of the pair (i, x) is expressed
using ∃ (i.e. the propositional truncation of Σ). We will only use
Eq. (3) to prove propositions so that we can use the universal
property of the truncation to obtain an actual pair.

We write α ∨ β for the binary join of α and β, i.e., for
the supremum α ∨ β = supF• of the two-element family
F• : 2 → Ord with F0 = α and F1 = β.

An operation on ordinals is continuous if it commutes with
suprema. For example, ordinal multiplication is continuous in
its right argument:

Lemma 2 (Ó). Ordinal multiplication is monotone and
continuous in its right argument, i.e. β ≤ γ → α× β ≤ α× γ
and α× supF• = sup(α× F•).

Proof. The first claim is easily proved, for if f : β → γ is
a simulation, then so is (a, b) : α × β 7→ (a, f b) : α × γ.
For the second claim, by the least upper bound property of
sup(α× F•) and the first claim, it then suffices to show that
α× supF• ≤ sup(α×F•). Given a : α and y : supF•, we use
Eqs. (2) and (3) to get the existence of i : I and x : Fi with

(α× supF•) ↓ (a, y) = α× (supF• ↓ y) + (α ↓ a)

= α× (Fi ↓ x) + (α ↓ a)

= sup(α× F•) ↓ [i, (a, x)]
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hence α× supF• ≤ sup(α× F•).

D. Expectations on Exponentiation

We can now state and make precise the specification (†) in
the language of homotopy type theory. The following equations
classically define ordinal exponentiation.

α0 = 1

αβ+1 = αβ × α

αsupi:I Fi = supi:I(α
Fi) (if α ̸= 0 and I inhabited)

0β = 0 (if β ̸= 0)

(Ó ‡)

The final clause 0β = 0 has the side condition β ̸= 0 in order
to not clash with α0 = 1. Classically, the supremum clause
is equivalent to the usual equation involving limit ordinals,
but formulating it for arbitrary inhabited suprema has the
advantage of ensuring that exponentiation is directly continuous
in the exponent. Furthermore, in this clause we ask for I to
be inhabited (i.e., we have an element of its propositional
truncation) rather than the classically equivalent requirement
that I is nonempty, since we will use the specification in a
constructive setting.

Lemma 3 (Ó). The zero and successor clauses in the specifi-
cation together imply the equations α1 = α and α2 = α× α.
Moreover, the supremum clause in the specification implies
that α(−) is monotone for α ̸= 0, i.e., if β ≤ γ then αβ ≤ αγ

for α ̸= 0.

The bad news is that constructively there cannot be an
operation satisfying all of the equations in (‡):

Proposition 4 (Ó). There is an exponentiation operation

exp : Ord× Ord → Ord

satisfying the specification (‡) if and only if LEM holds.

Proof. Using LEM, such an operation can be defined by cases.
Conversely, suppose we had such an operation exp and let P be
an arbitrary proposition. As explained in the beginning of the
section, any proposition can be viewed as an ordinal, and we
consider the sum of two such ordinals: α :≡ P + 1. Obviously
α ̸= 0 and 0 ≤ 1, so Lemma 3 yields 1 = exp(α,0) ≤
exp(α,1) = α. Hence, we get a simulation f : 1 → α. Now,
either f ⋆ = inl p, in which case P holds, or f ⋆ = inr ⋆. In
the latter case, we can prove ¬P : simulations preserve least
elements, so assuming p : P we must have f ⋆ = inl p, which
contradicts f ⋆ = inr ⋆.

The good news is that, if we assume that the base is positive,
we can define a well behaved ordinal exponentiation operation
αβ that satisfies the specification (‡). Assuming α ≥ 1, it is
convenient to consider a stronger specification of exponentiation
which combines the zero and supremum cases:

αβ+1 = αβ × α

αsupi:I Fi = 1 ∨ supi:I(α
Fi)

(Ó ‡′)

Note that in the supremum case, in contrast to the regular
specification (‡), we do not include any requirement that the

indexing family I is inhabited. As a consequence, still under
the assumption α ≥ 1, the stronger specification (‡′) implies
the regular specification (‡): Since 0 is the empty supremum,
(‡′) implies α0 = 1 ∨ 0 = 1. Further, for an inhabited index
set I , (‡′) gives αsupi:I Fi = supi:I(α

Fi) because in this case
we get supi:I(α

Fi) ≥ 1 as 1 = α0 ≤ αFi holds for any
i : I by monotonicity. The converse implication (‡) =⇒
(‡′) for α ≥ 1 is true classically, but does not seem provable
constructively.

III. ABSTRACT ALGEBRAIC EXPONENTIATION

Let us start by presenting a definition of exponentiation that is
fully guided by the equations we expect or want. We know from
Proposition 4 that we cannot hope to define exponentiation αβ

for arbitrary α and β, so in order to avoid the case distinction
on whether α = 0 or not, let us restrict our attention to the
case when α ≥ 1. This means that it is sufficient to define an
exponentiation operation which satisfies the specification (‡′).
This specification is based on the classical characterization
of ordinals as either successors or limits, where successor
ordinals are of the form β = γ + 1 and limit ordinals are of
the form λ = supγ<λ γ. This classification is not available
constructively, but a weaker variant of it is, where both cases
are combined: every ordinal is (constructively) the supremum
of the successors of its predecessors:

Lemma 5 ([19, §2.5], [32, Ex. 5.21] Ó). Every ordinal β
satisfies the equation β = supb:β(β ↓ b+ 1).

In particular, this lemma implies that the specification (‡′)
uniquely determines αβ for α ≥ 1. Indeed, we have

αβ = αsupb:β(β↓b+ 1) (by Lemma 5)

= 1 ∨ supb:β(α
β↓b+ 1) (to satisfy (‡′), supremum case)

= 1 ∨ supb:β(α
β↓b × α) (to satisfy (‡′), successor case).

The last expression involves αβ↓b, where the exponent β ↓ b
is strictly smaller than β, so this suggests to define αβ by
transfinite induction on β to be the ordinal 1∨supb:β(αβ↓b×α).
Since it will be convenient to work with a single supremum
instead, we adopt the following equivalent definition.

Definition 6 (Abstract exponentiation, αβ
Ó). For a given

ordinal α, we define the operation α(−) : Ord → Ord by
transfinite induction as follows:

αβ :≡ sup1+β(inl ⋆ 7→ 1; inr b 7→ αβ↓b × α).

The definition of exponentiation αβ does not rely on α being
positive, but most properties of αβ will require it. Note that
exponentiation itself is always positive, i.e., αβ ≥ 1 holds
by construction, making it possible to iterate well behaved
exponentiation. We will write ⊥ :≡ [inl ⋆, ⋆] for the least
element of an exponential αβ . Using Eqs. (2) and (3) we get
the following characterization of initial segments.

Proposition 7 (Initial segments of αβ
Ó). For a : α, b : β

and e : αβ↓b, we have

αβ ↓ [inr b, (e, a)] = αβ↓b × (α ↓ a) + αβ↓b ↓ e.
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We can put this characterization to work immediately, to
prove that abstract exponentiation is monotone in the exponent
for both the weak and the strict order of ordinals.

Proposition 8 (Ó). Abstract exponentiation is monotone in
the exponent: if β ≤ γ then αβ ≤ αγ . Furthermore, if α > 1,
then it moreover preserves the strict order, i.e., if α > 1 and
β < γ, then αβ < αγ .

Proof. Let f : β → γ be a simulation. By Lemma 1 we have

αβ ≡ sup1+β(inl ⋆ 7→ 1; inr b 7→ αβ↓b × α)

= sup1+β(inl ⋆ 7→ 1; inr b 7→ αγ↓fb × α)

≤ sup1+γ(inl ⋆ 7→ 1; inr c 7→ αγ↓c × α) ≡ αγ ,

where the inequality holds because the supremum gives the
least upper bound.

For the second claim, suppose we have α > 1 and β < γ,
i.e., we have 1 = α ↓ a1 and β = γ ↓ c for some a1 : α and
c : γ. Then, using Proposition 7 and the least element ⊥ of
αγ↓c, we calculate that

αγ ↓ [inr c, (⊥, a1)] = αγ↓c × (α ↓ a1) + αγ↓c ↓ ⊥
= αγ↓c × 1+ 0 = αγ↓c = αβ .

Hence, αβ < αγ , as desired.

Using monotonicity, we can now prove that abstract expo-
nentiation is well behaved whenever the base is positive.

Theorem 9 (Ó). Assuming α ≥ 1, abstract exponentiation αβ

satisfies the specification (‡′) (and hence also the specification
(‡)).

Proof. For the successor clause, we want to show αβ+1 =
αβ×α. First note that if α ≥ 1, then α1 = α, by the definition
of α1 as a supremum. The result then follows from the more
general statement in Proposition 10 below.1 Next, for the
supremum clause of (‡′), we want to show αsupF• = 1∨supαF•

for a given F : I → Ord. Since Fi ≤ supF• for all i : I ,
we have supαF• ≤ αsupF• via Proposition 8, and hence
1∨ supαF• ≤ αsupF• since 1 ≤ αβ for any β. For the reverse
inequality, it suffices to prove 1 ≤ 1 ∨ supαF• and

αsupF•↓y × α ≤ 1 ∨ supαF•

for all y : supF•. The former is immediate, and for the latter,
we note that Eq. (3) implies the existence of i : I and x : Fi

such that

αsupF•↓y × α = αFi↓x × α ≤ αFi ≤ 1 ∨ supαF• .

Finally, since α ≥ 1 by assumption, (‡) follows from (‡′).

The following two propositions establish the expected
connections of exponentiation with addition and multiplication,
respectively. Note that they hold even without the assumption
that α ≥ 1.

1In the formalization we additionally include a direct proof which is more
general in terms of universe levels.

Proposition 10 (Ó). For ordinals α, β and γ, we have

αβ+γ = αβ × αγ .

Proof. We do transfinite induction on γ. Our first observation is
that αβ × αγ = αβ ∨ supc:γ(α

β × αγ↓c × α), which follows
from the fact that multiplication is associative as well as con-
tinuous on the right (Lemma 2), noting that ∨ is implemented
as a supremum.

Applying the induction hypothesis, we can rewrite αβ×αγ↓c

to αβ+γ↓c, which is α(β+γ)↓inr c. The remaining goal thus is

αβ+γ = αβ ∨ supc:γ(α
(β+γ)↓inr c × α),

which one gets by unfolding the definition on the left and
applying antisymmetry of ≤.

Proposition 11 (Ó). For ordinals α, β and γ, iterated
exponentiation can be calculated as follows:(

αβ
)γ

= αβ×γ .

Proof. We proceed by transfinite induction on γ and use
antisymmetry. Since exponentials are least upper bounds,
and always positive, in one direction it suffices to prove(
αβ

)γ↓c × αβ ≤ αβ×γ for all c : γ. To this end, notice that(
αβ

)γ↓c × αβ = αβ×γ↓c × αβ (by IH)

= αβ×γ↓c+ β (by Proposition 10)

= αβ×(γ↓c+1) (since × distributes over +)

≤ αβ×γ ,

where the final inequality holds because we have γ ↓ c + 1 ≤ γ
(by Lemma 5), exponentiation is monotone in the exponent
(Proposition 8), and multiplication is monotone on the right
(Lemma 2).

For the other inequality, we show α(β×γ)↓(b,c)×α ≤
(
αβ

)γ
for all b : β and c : γ. Indeed we have

α(β×γ)↓(b,c) × α

= αβ×(γ↓c)+β↓b × α (by Eq. (2))

= αβ×(γ↓c) × αβ↓b × α (by Proposition 10)

=
(
αβ

)γ↓c × αβ↓b × α (by IH)

≤
(
αβ

)γ↓c × αβ (assoc. and monotonicity of ×)

≤
(
αβ

)γ
.

While it is quite clear that addition and multiplication of
ordinals preserve decidable equality, it is not obvious at all that
exponentiation also preserves this property — exponentiation
is defined as a supremum, which is defined as a quotient, and
it is not the case that quotients preserve decidable equality.
Luckily, the construction introduced in the next section will
make this fact obvious, at least when α has a trichotomous
least element.
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IV. DECREASING LISTS: A CONSTRUCTIVE FORMULATION
OF SIERPIŃSKI’S DEFINITION

As discussed in the introduction, in a classical metatheory,
there is a “non-axiomatic” construction of exponentials αβ for
α ≥ 1, based on functions β → α with finite support [17,
§XIV.15]. Recall that α ≥ 1 means that α has a least element
⊥ : α, and that a function β → α has finite support if it is
zero almost everywhere, i.e., if it differs from the least element
⊥ for only finitely many inputs. Using classical logic, the set
of functions β → α with finite support can then be shown to
be an ordinal.

Unfortunately, this construction depends on classical princi-
ples in several places. For example, the notion of being finite
splits apart into several different constructive notions such as
Bishop finiteness, subfiniteness, Kuratowski finiteness, etc. [33],
[34], and different notions seem to be needed to show that
functions with finite support form an ordinal β →fs α, that
this ordinal β →fs α satisfies the specification (‡), and so on.

Classically, a function with finite support is equivalently
given by the finite collection of input-output pairs where the
function is greater than zero, and this gives rise to a formulation
that we found to be well behaved constructively. The finite
collection of input-output pairs can be represented as a list in
which the input components are ordered decreasingly, which
ensures that the representation is unique and that each input
has at most one output. In order to re-use results on ordinal
multiplication, where the second component is dominant, i.e.,
b1 < b2 implies (a1, b1) < (a2, b2), we swap the positions of
inputs and outputs and consider lists of output-input pairs.

Definition 12 ([α, β]< Ó). For ordinals α and β, we write

[α, β]< :≡ Σ(l : List(α× β)). is-decreasing(mapπ2 l)

for the type of lists over α×β decreasing in the β-component.

Remark 13 (Ó). Since the type expressing that a list is
decreasing in the second component is a proposition, it follows
that two elements of [α, β]< are equal as soon as their
underlying lists are equal. Accordingly, in denoting elements
(l, p) of type [α, β]<, we will always omit the second proof
component p, and simply write l : [α, β]<.

Following Sierpiński’s construction, all outputs in the finite
collection of input-output pairs should be greater than the
least element. Therefore, we should be considering the type
[α>⊥, β]< where, for α with least element ⊥, we write

α>⊥ :≡ Σ(a : α). a > ⊥

for the set of all elements greater than the least element. In
general, this subtype is not necessarily an ordinal:

Proposition 14 (Ó). LEM holds if and only if, for all
ordinals α, the subtype of positive elements α>⊥ is an ordinal.

Proof. It is not hard to check that LEM allows one to prove that
α>⊥ is an ordinal. For the converse, we assume that Ord>0,
the (large) subtype of ordinals strictly greater than 0, is an
ordinal. To prove LEM it is enough to prove that the ordinal 2

of booleans and the ordinal Ω of truth values (cf. the example
in Section II) are equal. So let us show that they have the same
predecessors in Ord>0, namely only the one-element ordinal 1.
For 2 it is straightforward that its only predecessor in Ord>0

is 1. For Ω, we note that if 0 < α < Ω, then α = Ω ↓ Q for
some proposition Q and further we have 0 < Q, so that Q
must hold, and hence α = Ω ↓ Q = 1.

To ensure that α>⊥ is an ordinal, and consequently
[α>⊥, β]< as well, it suffices to require the least element ⊥ to
be trichotomous, meaning for all x : α, either x = ⊥ or x > ⊥.
As pointed out to us by Paul Levy, a trichotomous least element
is simply the least element with respect to the “disjunctive
order” ⩽ defined by x ⩽ y ⇐⇒ (x < y) + (x = y).

Lemma 15 (Ó). An ordinal α has a trichotomous least element
if and only if α = 1 + α′ for some (necessarily unique)
ordinal α′. If this happens, then α′ = α>⊥.

Proof. Assume α has a trichotomous least element ⊥. We first
want to show that in this case α>⊥ is an ordinal, and then
that α = 1+α>⊥. By trichotomy of ⊥, we can prove that the
order on α>⊥ inherited from α is extensional, and thus that
α>⊥ is an ordinal, since transitivity and wellfoundedness is
always retained by the inherited order. Using trichotomy again,
we can define an equivalence α → 1+α>⊥ by mapping x : α
to the left if x = ⊥ and to the right if x > ⊥.

The converse is immediate, and uniqueness follows as addi-
tion is left cancellable [10, Ordinals.AdditionProperties].

If α has a trichotomous least element, we thus have our can-
didate for a more concrete implementation of the exponential
αβ ; the following suggestion is similar to Grayson’s [19], to
which we come back in Section VI.

Definition 16 (Concrete exponentiation, exp (α, β) Ó). For
ordinals α and β with α having a trichotomous least element,
we write exp (α, β) for [α>⊥, β]< (cf. Definition 12) and call
it the concrete exponentiation of α and β.

Thanks to Lemma 15, we often choose to work with the more
convenient exp (1+ α′, β) = [α′, β]< rather than exp (α, β) =
[α>⊥, β]< in the Agda formalization. We next prove that indeed
exp (α, β) can be given a rather natural order which makes it
into an ordinal.

Proposition 17 (Ó). For ordinals α and β with α having a
trichotomous least element, the lexicographic order on lists
makes exp (α, β) into an ordinal that again has a trichotomous
least element.

Proof. By Lemma 15, α>⊥ is an ordinal, hence α>⊥ × β is
also an ordinal. The lexicographic order on List(α>⊥ × β)
preserves key properties of the underlying order, including
transitivity and wellfoundedness. Using structural induction on
lists, we can show that the lexicographic order on the subset
of lists decreasing in the second component is extensional.
Consequently, exp (α, β) is an ordinal and the empty list [ ] is
easily seen to be its least trichotomous element.
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We now wish to characterize the initial segments of the
ordinal exp (α, β). Before doing so we must introduce two
instrumental functions (Eqs. (4) and (5)) and a lemma.

Lemma 18 (Ó). Let α be an ordinal with a trichotomous least
element. Any order preserving map f : β → γ induces an
order preserving map f : exp (α, β) → exp (α, γ) by applying
f to the second component of each pair in the list.

Moreover, if f is a simulation, then so is f . Consequently,
exp (α,−) is monotone.

Proof. Note that order preservation of f ensures that the
outputs of f are again decreasing in the second component, so
that we have a well defined map which is easily seen to be
order preserving. Now suppose that f is moreover a simulation.
Since f is order reflecting and injective (Lemma 1), it follows
that f is order reflecting. Therefore, it suffices to prove that
if we have l < f l1, then there is l2 : exp (α, β) with f l2 = l.
We do so by induction on l. The case l = [ ] is easy and if l
is a singleton, then we need only use that f is a simulation.
So let l = (a, c) :: (a′, c′) :: l′ and l1 = (a1, b1) :: l′1. We
proceed by case analysis on l < f l1 and work out the details
in case c < f b1; the other cases are dealt with similarly.
Since f is a simulation we have b2 : β such that f b2 = c.
Since c′ < c < f b1 we have ((a′, c′) :: l′) < f l1, and
hence we get l′2 such that f l′2 = (a′, c′) :: l′ by induction
hypothesis. Since c′ < c = f b2 and f is order reflecting, the
list l2 :≡ (a, b2) :: l

′
2 is decreasing in the second component

and by construction we have f l2 = l as desired.

In particular, the construction in Lemma 18 gives us

ιb : exp (α, β ↓ b) ≤ exp (α, β) . (Ó 4)

for every b : β. In a sense, this map has an inverse: given a
list l : exp (α, β) such that each second component is below
some element b : β, we can construct

τb l : exp (α, β ↓ b) (Ó 5)

by inserting the required inequality proofs. Moreover, the
assignment l 7→ τb l is order preserving and inverse to ιb.

Proposition 19 (Initial segments of exp (α, β), Ó). For
ordinals α and β with α having a trichotomous least element,
we have

exp (α, β) ↓ ((a, b) :: l)

= exp (α, β ↓ b)× (α ↓ a) + exp (α, β ↓ b) ↓ τb l.

Similarly, for a : α>⊥, b : β and l : exp (α, β ↓ b), we have

exp (α, β) ↓ ((a, b) :: ιb l)

= exp (α, β ↓ b)× (α ↓ a) + exp (α, β ↓ b) ↓ l.

Proof. The second claim follows from the first and the fact
that τb and ιb are inverses.

For the first claim, we construct order preserving functions
f and g in each direction, and show that they are inverse to
each other. We define an order preserving map

f : exp (α, β) ↓ ((a, b) :: l)

→ exp (α, β ↓ b)× (α ↓ a) + exp (α, β ↓ b) ↓ τb l

by cases on l0 < ((a, b) :: l) via

f l0 :≡


inl([ ],⊥) if l0 = [ ];

inl((a′, b′) :: τb l1,⊥) if l0 = (a′, b′) :: l1 and b′ < b;

inl(τb l1, a
′) if l0 = (a′, b) :: l1 and a′ < a;

inr(τb l1) if l0 = (a, b) :: l1 and l1 < l.

In the other direction, we define g, using the fact that equality
with ⊥ is decidable, by

g (inl(l1, a
′)) :≡

{
ιb l1 if a′ = ⊥;

(a′, b) :: ιb l1 if a′ > ⊥;

g (inr l1) :≡ (a, b) :: ιb l1.

Direct calculations then verify that g is order preserving and
that f ◦ g = id and g ◦ f = id.

The upcoming Theorem 20 and Proposition 21 can be derived
from the corresponding facts about abstract exponentiation and
Theorem 24 below, but for comparison we include sketches of
direct proofs as well (for further details, we refer the interested
reader to the formalization). Alternatively, Theorem 24 can be
derived from Theorem 20 and the fact that operations satisfying
the specification (‡′) are unique — the proof effort is about
the same for both strategies.

Theorem 20 (Ó). Concrete exponentiation exp (α, β) satisfies
the specification (‡′) (and hence the specification (‡)) for α
with a trichotomous least element.

Proof sketch. Again, (‡) follows from (‡′) since α is assumed
to be positive. The successor case follows from the more
general Proposition 21 below. For the supremum clause of (‡′),
i.e., to prove exp (α, supF•) = 1 ∨ sup exp (α, F•), we appeal
to Lemma 18 to obtain simulations

σi : exp (α, Fi) ≤ exp (α, supF•) ,

yielding a simulation σ : 1∨ sup exp (α, F•) ≤ exp (α, supF•).
We now show that σ is additionally a surjection, and hence
an ordinal equivalence. The key observation is the following
lemma, which follows by induction on lists and Eq. (3):
Claim. Given (a, [i, x]) :: l of type exp (α, supF•), there exists
l′ : exp (α, Fi) such that σi((a, x) :: l

′) = (a, [i, x]) :: l.
Now, for the surjectivity of σ, let ℓ : exp (α, supF•) be

arbitrary. If ℓ = [ ], it is the image of the unique element ∗ : 1.
If ℓ = (a, y) :: l, then by Eq. (3), y = [i, x] for some i and
x, and we apply the claim to get l′ with σ[i, (a, x) :: l′] =
σi((a, x) :: l

′) = ℓ.

Proposition 21 (Ó). For ordinals α, β and γ with α having
a trichotomous least element, we have exp (α, β + γ) =
exp (α, β)× exp (α, γ).

Proof sketch. We start by defining

f : exp (α, β + γ) → exp (α, β)× exp (α, γ)

[ ] 7→ ([ ], [ ]);

(a, inl b) :: l 7→ ((a, b) :: π1(f l), π2(f l));

(a, inr c) :: l 7→ (π1(f l), (a, c) :: π2(f l)).
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The fact that this is well defined, in particular that π2(f l)
yields a list that is decreasing in the second component, follows
from the observation that an element of [α, β + γ]< starting
with (a, inl b) cannot have any (a′, inr c) entries. Put differently,
π2(f((a, inl b) :: l)) = [ ] for any l. A straightforward proof by
case analysis shows that f is order preserving.

In the other direction, we define

g : exp (α, β)× exp (α, γ) → exp (α, β + γ)

([ ], [ ]) 7→ [ ];

((a, b) :: l1, [ ]) 7→ (a, inl b) :: g(l1, [ ]);

(l1, (a, c) :: l2) 7→ (a, inr c) :: g(l1, l2).

Then one checks directly that g is order preserving and that it
is the inverse of f .

A feature of concrete exponentiation is that it preserves
decidability properties.

Proposition 22 (Ó). Assume α has a trichotomous least
element. If α and β have decidable equality, then so does
exp (α, β).

Proof. All of ×, List, and taking subtypes preserve decidable
equality, and exp (α, β) is a subtype of List (α× β).

We recall that an ordinal α is said to be trichotomous if we
have (x < y) + (x = y) + (y < x) for every x, y : α.

Proposition 23 (Ó). If α and β are trichotomous, then so is
exp (α, β).

Proof. Proved by a straightforward induction on lists.

V. ABSTRACT AND CONCRETE EXPONENTIATION

Since both the abstract and concrete constructions of
ordinal exponentiation satisfy the specification (‡′), they in
fact coincide whenever the base has a trichotomous least
element. We give an alternative proof based on initial segments
(Theorem 24), and explain its computational content by
showing how it relates to a surjective denotation function,
which represents elements of the abstract exponential as lists
of the concrete exponential.

A. Abstract and Concrete Exponentiation Coincide

If α has a trichotomous least element, then α in particular
has a least element, i.e., 1 ≤ α. Hence both the abstract
exponentiation αβ and the concrete exponentiation exp (α, β)
are well defined and well behaved in this case.

Theorem 24 (Ó). For all ordinals α and β such that α has a
trichotomous least element, we have

αβ = exp (α, β).

Proof. Let ⊥ be the trichotomous least element of α. We
prove the equation by transfinite induction on β. Our induction
hypothesis reads:

∀(b : β). αβ↓b = exp (α, β ↓ b) . (IH)

These equalities induce simulations and simulations preserve
initial segments (Lemma 1), so for all b : β, the simulation
provides for every e : αβ↓b a unique l : exp (α, β ↓ b) with
αβ↓b ↓ e = exp (α, β ↓ b) ↓ l, and similarly if we start with
an element of exp (α, β ↓ b) instead.

By extensionality of the ordinal of ordinals, it suffices to
show that each initial segment of αβ is equal to an initial
segment of exp (α, β) and vice versa.

Suppose first that we have e0 : αβ . By Eq. (3) we have
e0 = [inl ⋆, ⋆] ≡ ⊥ or e0 = [inr b, (e, a)] with a : α and e :
αβ↓b. In the first case, we have αβ ↓ e0 = 0 = exp (α, β) ↓ [ ].
The second case has two subcases: a is either equal to the
trichotomous least element ⊥, or greater than it. If a = ⊥,
then we calculate

αβ ↓ e0

= αβ↓b ↓ e (by Proposition 7)
= exp (α, β ↓ b) ↓ l (for a unique l by IH)
= exp (α, β) ↓ ιb l (using Lemma 1 and ιb from Eq. (4))

completing the proof for this case. If a > ⊥, then we calculate

αβ ↓ e0

= αβ↓b × (α ↓ a) + αβ↓b ↓ e (by Proposition 7)
= exp (α, β ↓ b)× (α ↓ a)

+ exp (α, β ↓ b) ↓ l (for a unique l by IH)
= exp (α, β) ↓ ((a, b) :: ιb l) (by Proposition 19)

completing the proof for this case.
Now let l0 : exp (α, β). Then either l0 = [ ] in which case

we are done, because exp (α, β) ↓ l0 = 0 = αβ ↓ ⊥, or
l0 = (a, b) :: l. In this second case, we calculate

exp (α, β) ↓ ((a, b) :: l)

= exp (α, β ↓ b)× (α ↓ a)

+ exp (α, β ↓ b) ↓ τb l (by Proposition 19)

= αβ↓b × (α ↓ a) + αβ↓b ↓ e (for a unique e by IH)

= αβ ↓ [inr b, (e, a)] (by Proposition 7)

finishing the proof.

The following decidability properties follow directly from
Theorem 24 and Propositions 22 and 23.

Corollary 25 (Ó).
• Suppose that α has a trichotomous least element. If α

and β have decidable equality, then so does αβ .
• Suppose α has a least element. If α and β are trichoto-

mous, then so is αβ .

Before we knew that Theorem 24 was true, we started
working on a direct proof that repeated concrete exponentiation
is exponentiation by the product, i.e., exp (exp (α, β), γ) =
exp (α, β × γ). However, dealing with all of the side conditions
stating that lists are decreasing proved to be too tedious for us
to finish the construction. Fortunately, this result follows for
free via Proposition 11 and Theorem 24.
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Corollary 26 (Ó). For ordinals α, β and γ with α having
a trichotomous least element, we have exp (α, β × γ) =
exp (exp (α, β), γ).

Note that in the above corollary we implicitly used that
exp(α, β) has a trichotomous least element (Proposition 17).

B. Lists as Representations

As remarked above, we used the assumption that the least
element of α is trichotomous to show that the set of lists
[α, β]< is an ordinal. But even without this assumption, we
can view such a list as a representation of something in the
abstract exponential αβ . This is made precise by the following
denotation function.

Definition 27 (Denotation function, J−Kβ Ó). We define

J−Kβ : [α, β]< → αβ

for any α by transfinite induction on β:

J [ ] Kβ :≡ ⊥;
J(a, b) :: lKβ :≡ [inr b, (Jτb lKβ↓b, a)];

with τb as in Eq. (5).

Remark 28. Note that the above definition is not by recursion
on the list, as the recursive call in the non-empty list case is on
τb l, which is not directly structurally smaller than (a, b) :: l.
With more work, JlKβ could be defined by induction on the
length of the list l, but a construction by transfinite induction on
β with a non-recursive case-split on l is more straightforward.

Every element of the abstract exponential αβ merely has a
representation as a list, in the following sense:

Proposition 29 (Ó). For all ordinals α and β, the denotation
function J−Kβ is surjective.

Proof. We do transfinite induction on β. For every x : αβ we
need to show that there exists a list l with JlKβ = x. As the
goal is a proposition, we can do case distinction on x; for
x = [inl ⋆, ⋆], the list is [ ], which leaves us with the case that
x is given by b : β together with e : αβ↓b and a : α. By the
induction hypothesis, there exists a list l′ : [α, β ↓ b]< whose
denotation is e, ensuring that (a, b) :: ιb l′ represents x.

Note that Proposition 29 does not assume that α has a least
element, and definitely not that it has a trichotomous least
element. However, when α does have a trichotomous least
element, the equality established in Theorem 24 induces a map
from concrete to abstract exponentials,

con-to-abs : exp (α, β) → αβ ,

and we could hope to relate this function to the denotation
function J−Kβ : [α, β]< → αβ .

Thanks to the trichotomous least element, we can normalize
a list by removing those pairs which have the least element in
the α-component, yielding a map

normalize : [α, β]< → [α>⊥, β]<

with

normalize ((a, b) :: l) :≡

{
normalize l if a = ⊥;

(a, b) :: normalize l if a > ⊥.

Note that the codomain of normalize is exactly exp (α, β).
The normalization function allows us to compare the induced

map with the denotation function:

Theorem 30 (Ó). In case α has a trichotomous least element,
the denotation function coincides with the equality between
abstract and concrete exponentiation in the following sense:

J−Kβ = con-to-abs ◦ normalize.

The two following lemmas directly prove the theorem.

Lemma 31 (Ó). The induced map con-to-abs coincides with
a denotation function

J−K′β : [α>⊥, β]< → αβ

that is defined by transfinite induction just like J−Kβ but with
a restricted domain instead.

Proof. We prove con-to-abs l = JlK′β for all l : [α>⊥, β]<
by induction on β and a case distinction on l, and use that
elements of ordinals are equal if and only if they determine
the same initial segments. The case of the empty list is easy,
as it is the least element of [α>⊥, β]<, and since con-to-abs
is a simulation it must map it to the least element of αβ . For
nonempty lists, we have

αβ ↓ con-to-abs ((a, b) :: l)
= exp (α, β) ↓ ((a, b) :: l) (I)
= exp (α, β ↓ b)× (α ↓ a) + exp (α, β ↓ b) ↓ τb l (II)

= αβ↓b × (α ↓ a) + exp (α, β ↓ b) ↓ τb l (III)

= αβ↓b × (α ↓ a) + αβ↓b ↓ con-to-abs (τb l) (IV)

= αβ↓b × (α ↓ a) + αβ↓b ↓ Jτb lK′β↓b (V)

= αβ ↓ [inr b, (Jτb lK′β↓b, a)] (VI)

≡ αβ ↓ J(a, b) :: lK′β ,

where steps (I) and (IV) use that simulations preserve initial
segments, step (II) is by Proposition 19, step (III) is by
Theorem 24, step (V) uses the induction hypothesis, and (VI)
is by Proposition 7.

Lemma 32 (Ó). The denotations are related via normalization:

J−Kβ = J−K′β ◦ normalize.

Proof. This is proved by transfinite induction on β. The case
of the empty list is easy. So consider an element of [α, β]< of
the form (a, b) :: l. Suppose first that a is not the trichotomous
least element ⊥, then

J(a, b) :: lKβ ≡ [inr b, (Jτb lKβ↓b, a)]
= [inr b, (Jnormalize(τb l)K′β↓b, a)] (by IH)

= [inr b, (Jτb (normalize l)K′β↓b, a)]
≡ Jnormalize((a, b) :: l)K′β ,
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where the penultimate equality uses that normalize and τb
commute.

For the trichotomous least element ⊥, we have

J(⊥, b) :: lKβ ≡ [inr b, (Jτb lKβ↓b,⊥)]

= Jιb(normalize(τb l))K′β (I)

= Jnormalize(ιb(τb l))K′β (II)

= Jnormalize lK′β (III)

≡ Jnormalize((⊥, b) :: l)K′β ,

where (II) holds because normalize and ιb commute, (III)
because τb cancels ιb, and (I) holds because these elements
determine the same initial segments:

αβ ↓ [inr b, (Jτb lKβ↓b,⊥)]

= αβ↓b × (α ↓ ⊥) + αβ↓b ↓ Jτb lKβ↓b (by Proposition 7)

= αβ↓b ↓ Jτb lKβ↓b (as α ↓ ⊥ = 0)

= αβ↓b ↓ Jnormalize(τb l)K′β↓b (by IH)

= exp (α, β ↓ b) ↓ normalize(τb l) (by (i) in Lemma 1)

= αβ↓b ↓ Jιb(normalize(τb l))K′β , (by (i) in Lemma 1)

where the second-to-last equality employs the map J−K′β↓b,
which is a simulation by Lemma 31 as con-to-abs is induced
by an equality (and hence is a simulation). For the final equality
we consider the composition of simulations J−K′β ◦ ιb.

Remark 33. We do not know of a direct proof that the
denotation function con-to-abs is an ordinal equivalence, or
even a simulation. Instead, our proof of Theorem 24 makes
use of the equalities given by the induction hypothesis to prove
the inductive step.

VI. ON GRAYSON’S DECREASING LISTS

A slight variation of our decreasing list construction
exp (α, β) was suggested in Grayson’s PhD thesis [18, §IX.3],
the relevant part of which has appeared as Grayson [19, §3.2].
His setting is an unspecified version of constructive set (or type)
theory and uses setoids (i.e., sets with an equivalence relation)
for the construction. Grayson’s suggestion does not require
the base ordinal α to have a least element. Unfortunately, his
construction (which is presented without proofs) does not work
in the claimed generality, as assuming that it always yields an
ordinal is equivalent to the law of excluded middle. We present
our argument for this in the setting of the current paper, but
the argument carries over to a foundation based on setoids.

Definition 34 (Grayson [18, §IX.3] Ó). Given an ordinal α, we
say that x : α is positively non-minimal if ∃(a : α).x > a. Then,
given a second ordinal β, the type of Grayson lists, written
Gr(α, β), is the type of lists over α× β that are decreasing in
the β-component and where all α-components are positively
non-minimal.

If α has a trichotomous least element ⊥, it is easy to see
(and formalized [29, Grayson]) that x is positively non-minimal
if and only if x > ⊥, i.e. the two notions of positivity coincide.

Thus, under this assumption, Gr(α, β) becomes equivalent to
exp (α, β). However, the assumption cannot be removed:

Proposition 35 (Ó). LEM holds if and only if Gr(α, β) is an
ordinal for all (possibly large) ordinals α and β. This remains
true with the additional condition that α has a least element.

Proof. If LEM is assumed, then every α is empty or has a
trichotomous least element, and the construction works in either
case. For the other direction, let us fix β to be 1; then, Gr(α,1)
is equivalent to 1+α+, where the latter is the type of positively
non-minimal elements of α. It is easy to see that Gr(α,1) is an
ordinal if and only if α+ is. But the assumption that Ord+ is
an ordinal implies LEM (cf. the proof of Proposition 14).

Finally, Grayson [18, §IX.3] claims the recursive equation

Gr(α, β) = 1 ∨ supb:β(Gr(α, β ↓ b)× α)

in full generality. It follows from the above discussion and
Theorem 24 that this equation holds if α has a detachable least
element. The latter condition is indispensable, as the left-hand
side always has a least detachable element (the empty list),
while, for β = 1 and α ≥ 1, the right-hand side does so
exactly if α does. For more details, we refer the interested
reader to the Grayson file of our formalization [29].

VII. CONSTRUCTIVE TABOOS

We were able to give constructive proofs of many desirable
properties of ordinal exponentiation for both abstract and
concrete exponentials, e.g., monotonicity in the exponent, or
algebraic laws such as αβ+γ = αβ×αγ and αβ×γ = (αβ)

γ . In
this section, we explore classical properties that are not possible
to prove constructively. A first example is monotonicity in the
base, which is inherently classical.

Proposition 36 (Ó). Exponentiation is monotone in the base
if and only if LEM holds. In fact, LEM is already implied by
each of the following weaker statements, even when α and β
are each assumed to have a trichotomous least element:

(i) α < β → αγ ≤ βγ;
(ii) α < β → α× α ≤ β × β.

Proof. Note that (i) implies (ii) by taking γ :≡ 2. To see that
(ii) implies LEM, we consider an arbitrary proposition P and
the ordinals α :≡ 2 and β :≡ 3 + P . Clearly, α < β and α
and β respectively have trichotomous least elements 0 and inl 0,
so that we get a simulation f : α×α → β × β by assumption.

If we have p : P , then gp : α× α → β × β defined by

gp(0, 0) :≡ (inl 0, inl 0), gp(1, 0) :≡ (inl 1, inl 0),

gp(0, 1) :≡ (inl 2, inl 0), gp(1, 1) :≡ (inr p, inl 0).

can be checked to be a simulation.
Since simulations are unique, gp must agree with f in case

P holds. We now simply check where (1, 1) gets mapped by f :
if it is of the form (inr p, y′) then obviously P holds; and if it
is of the form (inl y, y′), then we claim that ¬P holds. Indeed,
assuming p : P we obtain (inl y, y′) = f(1, 1) = gp(1, 1) ≡
(inr p, inl 0), which is impossible as coproducts are disjoint.
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We note that the argument above works for any operation
satisfying the exponentiation specification (by Lemma 3).

The following is an example of an equation that does not
follow from the specification of exponentiation, since we cannot
decide if a given proposition is zero, a successor, or a non-
trivial supremum. Nevertheless, it is true and it is used to
derive a taboo below.

Lemma 37 (Ó). For a proposition P we have 2P = 1+ P .

Proof. Given p : P , we note that 2P↓p × 2 = 20 × 2 = 2,
so that 2P = supF• with F : 1+ P → Ord defined as
F (inl ⋆) :≡ 1 and F (inr p) :≡ 2. Since sup gives the least
upper bound and P implies 1+ P = 2, we get a simulation
supF• ≤ 1+ P . Conversely, we note that

(1+ P ) ↓ (inl ⋆) = 0 = 1 ↓ ⋆ = supF• ↓ [inl ⋆, ⋆], and
(1+ P ) ↓ (inr p) = 1 = 2 ↓ 1 = supF• ↓ [inr p, 1],

yielding a simulation 1+ P ≤ supF•.

As mentioned just after Lemma 1, showing that α ≤ β is
often straightforward in a classical metatheory, as LEM ensures
that a simulation can always be “carved out” out of any order
preserving function α → β. This result is unavoidably classical,
in the sense that it in turn implies the law of excluded middle.

Lemma 38 (Ó). Every order preserving function between
ordinals induces a simulation if and only if LEM holds.

Proof. The right-to-left direction was proven and formalized
by Escardó [10, Ordinals.OrdinalOfOrdinals]: assuming LEM,
to prove α ≤ β it suffices to show that it is impossible that
β < α, but this readily follows from having an order preserving
function from α to β.

In the other direction, let P be an arbitrary proposition, and
consider α :≡ 1 and β :≡ P + 1. The function ⋆ 7→ inr ⋆ :
α → β is trivially order preserving, and thus gives rise to
a simulation f : α → β by assumption. Since simulations
preserve least elements, we can then decide P , since P holds
if and only of f ⋆ = inl p for some p : P .

The following proposition is another example of a useful
property of exponentials which is classically true, but unfortu-
nately impossible to realize constructively.

Proposition 39 (Ó). The following are equivalent:

(i) for all ordinals β, we have β ≤ 2β;
(ii) for all ordinals β and α > 1, we have β ≤ αβ;

(iii) LEM.

Proof. Clearly, (ii) implies (i). To see that (i) implies (iii), we
let P be an arbitrary proposition and we consider α :≡ 2 and
β :≡ P +1. By Lemma 37 we have αβ = (1+P )×2, so that
we get a simulation f : P + 1 → (1 + P )× 2 by assumption.
We now decide P by inspecting f(inr ⋆).

If f(inr ⋆) = (inr p, b), then obviously P holds.
If f(inr ⋆) = (inl ⋆, 0), then ¬P holds, for if we had p : P ,

then, since simulations preserve the least element, f(inl p) =

(inl ⋆, 0) = f(inr ⋆) which is impossible as f is injective (by
Lemma 1) and coproducts are disjoint.

Finally, if f(inr ⋆) = (inl ⋆, 1), then P holds, because f is a
simulation and (inl ⋆, 0) < (inl ⋆, 1) = f(inr ⋆), so there must
be x : P + 1 with x < inr ⋆ and f x = (inl ⋆, 0). But then x
must be of the form inl p.

Finally, to prove (iii) implies (ii), assume α > 1, i.e., there is
a1 : α such that α ↓ a1 = 1, and assume LEM. By Lemma 38,
β ≤ αβ holds as soon as we have an order preserving map
f : β → αβ . We claim that the map f b :≡ [inr b, (⊥, a1)] does
the job. Indeed, by Proposition 7, we have αβ ↓ f b = αβ↓b, so
that if b < b′, then αβ↓b < αβ↓b′ by Proposition 8 and hence
f b < f b′ as taking initial segments is order reflecting.

VIII. CONCLUSIONS AND FUTURE WORK

Working in homotopy type theory, we have presented two
constructively well behaved definitions of ordinal exponen-
tiation and showed them to be equivalent in case the base
ordinal has a trichotomous least element. The equivalence,
in combination with the univalence axiom, was used to
transfer various results, such as algebraic laws and decidability
properties, from one construction to the other. We furthermore
marked the limits of a constructive treatment by presenting no-
go theorems that show the law of excluded middle (LEM) to be
equivalent to certain statements about ordinal exponentiation.

A natural question, to which we do not yet have a conclusive
answer, is whether it is possible to fuse the two constructions of
this paper and define ordinal exponentiation for base ordinals
that do not necessarily have a trichotomous least element via
quotiented lists.

In future work, we would like to develop constructive
ordinal arithmetic further by studying subtraction, division
and logarithms. Like with exponentiation, a careful treatment
is required here, as e.g., the existence of ordinal subtraction
in the usual formulation is equivalent to excluded middle, as
observed by Escardó [10, Ordinals.AdditionProperties]. It is
possible, however, to construct a function f : Ord×Ord → Ord
satisfying the weaker requirement that f(α, β) is the greatest
ordinal γ with α+ γ ≤ β and γ ≤ β. In fact, this is actually
an instance of a more general construction: given a property
P of Ord that is continuous, antitone and bounded, then there
is a maximal ordinal satisfying P . Here a property is antitone
if α ≤ β gives P β → P α and bounded if there exists δ
such that α ≤ δ whenever α satisfies P . This more general
construction can be applied to division and logarithms, and
is a constructive reformulation of a well known theorem in
classical ordinal theory, where the boundedness condition is
redundant, see e.g., Enderton [12, Theorem Schema 8D].
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