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Abstract. A new theory of data types which allows for the definition of types as initial
algebras of certain functors Fam(C) → Fam(C) is presented. This theory, which we call
positive inductive-recursive definitions, is a generalisation of Dybjer and Setzer’s theory of
inductive-recursive definitions within which C had to be discrete — our work can therefore
be seen as lifting this restriction. This is a substantial endeavour as we need to not only
introduce a type of codes for such data types (as in Dybjer and Setzer’s work), but also
a type of morphisms between such codes (which was not needed in Dybjer and Setzer’s
development). We show how these codes are interpreted as functors on Fam(C) and
how these morphisms of codes are interpreted as natural transformations between such
functors. We then give an application of positive inductive-recursive definitions to the
theory of nested data types and we give concrete examples of recursive functions defined on
universes by using their elimination principle. Finally we justify the existence of positive
inductive-recursive definitions by adapting Dybjer and Setzer’s set-theoretic model to our
setting.

1. Introduction

Inductive types are the bricks of dependently typed programming languages: they represent
the building blocks on which any other type is built. The mortar the dependently typed
programmer has at her disposal for computation with dependent types is recursion. Usually,
a type A is defined inductively, and then terms or types can be defined recursively over the
structure of A. The theory of inductive-recursive definitions [Dyb00, DS99] explores the
simultaneous combination of these two basic ingredients, pushing the limits of the theoretical
foundations of data types.

The key example of an inductive-recursive definition is Martin-Löf’s universe à la
Tarski [ML84]. A type U consisting of codes for small types is introduced, together with a
decoding function T , which maps codes to the types they denote. The definition is both
inductive and recursive; the type U is defined inductively, and the decoding function T is
defined recursively on the way the elements of U are generated. The definition needs to be
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simultaneous, since the introduction rules for U refer to T . We illustrate this by means of a
concrete example: say we want to define a data type representing a universe containing a
name for the natural numbers, closed under Σ-types. Such a universe will be the smallest
family of sets (U, T ) satisfying the following equations

U = 1 + Σu :U. Tu→ U
T (inl ∗) = N
T (inr (u, f)) = Σx :Tu. T (fx)

(1.1)

In this definition we see how ground types and the type constructor Σ are reflected in U .
The left summand of the right hand side of the equation defining U is a code for the type of
natural numbers, while the right summand is a code reflecting Σ-types. Indeed the name of
a the type ΣAB for A : Set, B : A→ Set in the universe (U, T ) will consists of a name in U
for the type A, i.e. an element u :U , and a function f : Tu→ U representing the A-indexed
family of sets B. The decoding function T maps elements of U to types according to the
description above: the code for natural numbers decodes to the set of natural numbers
N while an element (u, f) of the right summand decodes to the Σ-type it denotes. Other
examples of inductive-recursive definitions have also appeared in the literature, such as e.g.
Martin-Löf’s computability predicates [ML72] or Aczel’s Frege structures [Acz80]. Lately
the use of inductive-recursive definitions to encode invariants in ordinary data structures
has also been considered [EHA09].

Dybjer’s [Dyb00] insight was that these examples are instances of a general notion,
which Dybjer and Setzer [DS99] later found a finite axiomatisation of. Their theory of
inductive-recursive definitions IR consists of: (i) a representation of types as initial algebras
of functors; and (ii) a grammar for defining such functors. Elements of the grammar are
called IR codes, while functors associated to IR codes are called IR functors. The theory
naturally covers simpler inductive types such as lists, trees, vectors, red-black trees etc. as
well. Dybjer and Setzer [DS03] then gave an initial algebra semantics for IR codes by showing
that IR functors are naturally defined on the category Fam(D) of families of elements of
a (possibly large) type D and that these functors do indeed have initial algebras. More
generally, abstracting on the families construction and the underlying families fibration
π : Fam(D) → Set, we have recently shown how to interpret IR functors in an arbitrary
fibration endowed with the appropriate structure [GMNFS13]. In this article, we will only
consider the families fibration.

There is, however, a complication. When interpreting IR functors such as those building
universes closed under dependent products, the mixture of covariance and contravariance
intrinsic in the Π operator forces one to confine attention to functors Fam |C| → Fam |C| or,
equivalently, to work with only those morphisms between families which are commuting
triangles. More abstractly, as we have shown [GMNFS13], this corresponds to working in
the split cartesian fragment of the families fibration π : Fam(C)→ Set, i.e. to only consider
those morphisms in Fam(C) which represent strict reindexing. In this paper we remove this
constraint and hence explore a further generalization of IR, orthogonal to the one proposed
in Ghani et al. [GMNFS13]. We investigate the necessary changes of IR needed to provide
a class of codes which can be interpreted as functors Fam(C) → Fam(C). This leads us
to consider a new variation IR+ of inductive-recursive definitions which we call positive
inductive-recursive definitions. The most substantial aspect of this new theory is that in
order to define these new codes, one needs also to define the morphisms between codes. This
is no handle-turning exercise!
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We first recall Dybjer and Setzer’s theory of inductive-recursive definitions (Section 2).
To develop the theory we then introduce a syntax and semantics consisting of IR+ codes
and their morphisms, and an explanation how these codes are interpreted as functors
Fam(C) → Fam(C), where C is an arbitrary category (Section 3). We then illustrate the
stronger elimination principles that are possible for positive inductive-recursive definitions.
We consider several examples of catamorphisms that are not possible with ordinary inductive-
recursive definitions (Section 4). As a practical application, we use positive inductive-recursive
definitions to shed new light on nested data types (Section 5). We formally compare IR+ with
the existing theory of IR (Section 6), and adapt Dybjer and Setzer’s model construction to
our setting (Section 7). The material in this paper has been formalised in Agda [GMNF14].

The paper uses a mixture of categorical and type theoretic constructions. However, the
reader should bear in mind that the foundations of this paper are type theoretic. In other
words, all constructions should be understood to take place in extensional Martin-Löf type
theory with one universe Set. This is entirely standard in the literature. The one exception
is the use of a Mahlo cardinal required to prove that positive inductive recursive functors
have initial algebras in Section 7. It should be emphasised that the Mahlo cardinal is only
used to justify the soundness of the theory, and does not play any computational role. We
refer the interested reader to Dybjer and Setzer [DS99] — they use a Mahlo cardinal for the
same purpose — for the technical details. We also use fibrational terminology occasionally
when we feel it adds insight, however readers not familiar with fibrations can simply ignore
such comments.

2. Inductive-recursive definitions

In increasing complexity and sophistication, inductive definitions, indexed inductive defi-
nitions and inductive-recursive definitions encode more and more information about the
data structures in question into the type itself. Being situated at the top of this hierarchy,
inductive-recursive definitions provide a unifying theoretical framework for many different
forms of data types. Indeed, both inductive and indexed inductive definitions are simple
instances of IR [GHM+13].

The original presentation of induction-recursion given by Dybjer [Dyb00] was as a
schema. Dybjer and Setzer [DS99] further developed the theory to internalize the concept
of an inductive-recursive definition. They developed a finite axiomatization of the theory
through the introduction of a special type of codes for inductive-recursive definitions. The
following axiomatization, which closely follows Dybjer and Setzer [DS99], presents the syntax
of IR as an inductive definition.

Definition 2.1 (IR codes). Let D be a (possibly large) type. The type of IR(D) codes has
the following constructors:

d : D
ι d : IR(D)

A : Set f : A→ IR(D)

σA f : IR(D)

A : Set F : (A→ D)→ IR(D)

δA F : IR(D)
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This is the syntax of induction-recursion — it is quite remarkable in our opinion that
this most powerful of theories of data types can be presented in such a simple fashion. These
rules have been written in natural-deduction style and we may use the ambient type theory
to define, for example, the function f in the code σAf . An example of an IR code is given in
Example 2.5; this code represents the universe containing the natural numbers and closed
under Σ-types given in Equation (1.1). We now turn to the semantics of induction-recursion:
we interpret IR codes as functors, and to this end, we use the standard families construction
Fam from category theory. We start recalling the definition of the category Fam(C) of
families of objects of a category C.

Definition 2.2. Given a category C, the category Fam(C) has objects pairs (X,P ) where
X is a set and P : X → C is a functor which we can think of as an X-indexed family of
objects of C. A morphism from (X,P ) to (Y,Q) is a pair (h, k) where h : X → Y is a

function, and k : P
·→ Q ◦ h is a natural transformation.

Of course, the naturality condition in the definition of a morphism of families is vacuous
as the domains of the functors in question are discrete.

Remarks 2.3. For any category C, the category Fam(C) always has rich structure:

• Fam(C) is fibred over Set (see e.g. Jacobs [Jac99]). We omit the definitions here, but
recall the standard splitting cleavage of the fibration π : Fam(C)→ Set which is relevant
later: a morphism (h, k) : (X,P )→ (Y,Q) is a split cartesian morphism if k is a family of
identity morphisms, i.e. if P = Q ◦ h.
• Fam(C) is the free set indexed coproduct completion of C; that is Fam(C) has all set indexed

coproducts and there is an embedding C→ Fam(C) universal among functors F : C→ D
where D is a category with set indexed coproducts. Given an A-indexed collection of
objects (Xa, Pa)a :A in Fam(C), its A-indexed coproduct is the family

∑
a :A(Xa, Pa) =

(
∑

a :AXa, [Pa]a :A).
• Fam(C) is cocomplete if and only if C has all small connected colimits (Carboni and

Johnstone [CJ95, dual of Prop. 2.1]).
• Fam is a functor CAT → CAT; given F : C → D, we get a functor Fam(F ) : Fam(C) →
Fam(D) by composition: Fam(F )(X,P ) = (X,F ◦ P ). Here CAT is the category of large
categories.

When C is a discrete category, a morphism between families (X,P ) and (Y,Q) in Fam(C)
consists of a function h : X → Y such that P x = Q (hx) for all x in X. From a fibrational
perspective, this amounts to the restriction to the split cartesian fragment Fam |C| of the
fibration π : Fam(C) → Set, for C an arbitrary category. This observation is crucial for
the interpretation of IR codes as functors. Indeed, given a type D, which we think of as
the discrete category |D| (with objects terms of type D), we interpret IR codes as functors
Fam |D| → Fam |D|.

Theorem 2.4 (IR functors [DS03]). Let D be a (possibly large) type. Every code γ : IR(D)
induces a functor

JγK : Fam |D| → Fam |D|
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Proof. We define JγK : Fam |D| → Fam |D| by induction on the structure of the code γ. We
first give the action on objects:

Jι cK(X,P ) = (1, λ . c)

JσA fK(X,P ) =
∑
a :A

Jf aK(X,P )

JδA F K(X,P ) =
∑

g :A→X
JF (P ◦ g)K(X,P )

We now give the action on morphisms. Let (h, id) : (X,P )→ (Y,Q) be a morphism in
Fam |D|, i.e. h : X → Y and Q ◦ h = P .

Jι cK(h, id) = (id1, id)

JσA fK(h, id) = [ina ◦ Jf aK(h, id)]a :A

JδA F K(h, id) = [inh◦g ◦ JF (Q ◦ h ◦ g)K(h, id)]g :A→X

Here, the last line type checks Q ◦ h = P since D is discrete. Hence

Q ◦ h ◦ g = P ◦ g (2.1)

and we can apply the induction hypothesis.

Note how the interpretation of both σ and δ codes makes essential use of coproducts of
families as defined in Remarks 2.3. In particular, the interpretation of a code δAF uses as
index set of the coproduct the function space A→ X, which is a set since both A and X are.

Ghani et al. [GHM+13] introduces morphisms between (small) IR codes. The morphisms
are chosen to make the interpretation function J−K : IR(D)→ (Fam |D| → Fam |D|) full and
faithful. Thus, transporting composition and identity along this function makes IR(D) into
a category, and J−K : IR(D)→ (Fam |D| → Fam |D|) can really be seen as a full and faithful
functor. We will draw inspiration from this in Section 3 when we generalise the semantics
to endofunctors on Fam(C) for possibly non-discrete categories C. Note however that the
definition of morphisms between codes we give here differs from the one appearing in Ghani
et al. [GHM+13]. The key idea of the latter is a characterization of the interpretation of δ
codes as left Kan extensions. In our more general setting where C can be a non-discrete
category, this characterization fails. As a consequence, we lose the full and faithfulness of
the interpretation functor J−K and we have to prove by hand that the set of codes and
morphisms between them actually is a category. Full and faithfulness of the interpretation is
convenient and desirable, and often simplifies calculations. Nonetheless, it is not an essential
property, and we manage to make do without it.

We call a data type inductive-recursive if it is the initial algebra of a functor induced
from an IR code. Let us look at some examples.

Example 2.5 (A universe closed under dependent sums). In the introduction, we introduced
a universe in Equation (1.1), containing the natural numbers and closed under Σ-types, and
claimed that this universe can be defined via an inductive-recursive definition. Indeed, one
can easily write down a code γN,Σ : IR(Set) for a functor that will have such a universe as its
initial algebra:

γN,Σ := ιN +IR δ1(X 7→ δX∗(Y 7→ ιΣ(X∗)Y )) : IR(Set)

Here we have used γ+IRγ
′ := σ2 (0 7→ γ; 1 7→ γ′) to encode a binary coproduct as a 2-indexed

coproduct. Also, in the above, note that X : 1→ Set and so X∗ is simply the application of
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X to the canonical element of 1. If we decode γN,Σ, we get a functor which satisfies

JγN,ΣK(U, T ) ∼= (1 + Σu :U . T (u)→ U, inl 7→ N; inr(u, f) 7→ Σx :T (u) . T (f(x)))

so that the initial algebra (U, T ) of JγN,ΣK, which satisfies (U, T ) ∼= JγN,ΣK(U, T ) by Lambek’s
Lemma, indeed satisfies Equation (1.1).

Example 2.6 (A universe closed under dependent function spaces). In the same way, we
can easily write a down a code for a universe closed under Π-types:

γN,Π := ιN +IR δ1(X 7→ δX∗(Y 7→ ιΠ(X∗)Y )) : IR(Set)

Even though this looks extremely similar to the code in the previous example, we will see in
the next section that there is a big semantic difference between them.

3. Positive Inductive-Recursive Definitions

Theorem 2.4 tells us that IR codes can be interpreted as functors on families built over a
discrete category. What happens if we try to interpret IR codes on the category Fam(C),
and not just on the subcategory Fam |C|, whose morphisms are the split cartesian ones only?
Consider the following morphism in Fam |C|:

X

P   

h // Y

Q��
C

What if the diagram above does not commute on the nose, since C is not simply a discrete
category, but a category whose intrinsic structure we want to keep track of? For instance,
it is natural to require that the diagram above only commutes up to isomorphism, i.e.
P (x) ∼= Q(h(x)) instead of P (x) = Q(h(x)). What structure is required to interpret
inductive-recursive definitions in this larger category? The problem is that if we allow for
more general morphisms, we can not prove functoriality of the semantics of a δ code as it
stands anymore: it is essential to have an actual equality on the second component of a
morphism in Fam(C) in order to have a sound semantics.

In this section we propose a new axiomatization which enables us to solve this problem.
This new theory, which we dub positive inductive-recursive definitions, abbreviated IR+,
represents a generalization of IR which allows the interpretation of codes as functors defined
on Fam(C) for an arbitrary category C. In particular, if we choose C to be a groupoid, i.e.
a category where every morphism is an isomorphism, we get triangles commuting up to
isomorphism as morphisms in Fam(C).

3.1. Syntax and Semantics of IR+(C). The crucial insight which guides us when intro-
ducing the syntax of IR+ is to deploy proper functors in the introduction rule of a δ code.
This enables us to remove the restriction on morphisms within inductive recursive definitions;
indeed, if we know that F : (A→ C)→ IR+(C) is a functor, and not just a function, we do
not have to rely on an identity in Equation (2.1), but we can use the second component of a
morphism (h, k) : (X,P )→ (Y,Q) in Fam(C) to get a map P ◦ g → Q ◦ h ◦ g; then we can
use the fact that F is a functor to get a morphism between codes F (P ◦ g)→ F (Q ◦ h ◦ g).
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But, now we have to roll up our sleeves. For F : (A → C) → IR+(C) to be a functor,
we need both A→ C and IR+(C) to be categories. While it is clear how to make A→ C a
category, turning IR+(C) into a category entails defining both codes and morphisms between
codes simultaneously, in an inductive-inductive fashion [NFS12, NF13]. We give an axiomatic
presentation of IR+ analogously to the one given in Section 2 for the syntax of IR; however
we now have mutual introduction rules to build both the type of IR+(C) codes and the type
of IR+(C) morphisms, for C a given category. The semantics we give then explains how
IR+(C) codes can be interpreted as functors on Fam(C), while IR+(C) morphisms between
such codes can be interpreted as natural transformations.

Definition 3.1. Given a category C we simultaneously define the type IR+(C) of pos-
itive inductive-recursive codes on C, and the type of morphisms between these codes
HomIR+(C)( , ) : IR+(C)→ IR+(C)→ type as follows:

• IR+(C) codes:
c : C

ι c : IR+(C)

A : Set f : A→ IR+(C)

σAf : IR+(C)

A : Set F : (A→ C)→ IR+(C)

δAF : IR+(C)

• IR+(C) morphisms:
f : HomC(c, c′)

(ι⇒ ι)(f) : HomIR+(C)(ι c, ι c
′)

α : A→ B ρ :
∏
x:AHomIR+(C)(f(x), g(α(x)))

(σ⇒σ)(α, ρ) : HomIR+(C)(σA f, σB g)

α : B → A ρ : Nat(F,G(− ◦ α))

(δ⇒δ)(α, ρ) : HomIR+(C)(δAF, δBG)

In the last clause, we have indicated with Nat(F,G(− ◦ α)) the collection of natural trans-
formations between the functors F and G(− ◦ α) : (A → C) → IR+(C). Note also the
contravariant twist in the type of α : B → A in this clause.

We need to make sure that Definition 3.1 really defines a category, i.e. that composition
of IR+ morphisms can be defined, and that it is associative and has identities. This can be
proved by recursion on the structure of morphisms:

Lemma 3.2. Let C be a category. Then IR+(C) is a category with morphisms given by
HomIR+(C).

Proof. We define id+
x : HomIR+(C)(x, x) by recursion on x:

id+
ιc = (ι⇒ ι)(idc)

id+
σA f

= (σ⇒σ)(idA, λ a . id
+
f(a))

id+
δAF

= (δ⇒δ)(idA, λ h . id
+
F (h))
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Composition ◦IR+ : HomIR+(C)(y, z) → HomIR+(C)(x, y) → HomIR+(C)(x, z) is defined by

recursion on f : HomIR+(C)(y, z) and g : HomIR+(C)(x, y):

(ι⇒ ι)(f) ◦IR+ (ι⇒ ι)(g) = (ι⇒ ι)(f ◦C g)

(σ⇒σ)(α, ρ) ◦IR+ (σ⇒σ)(β, τ) = (σ⇒σ)(α ◦ β, λ x . ρ(α(x)) ◦IR+ τ(x))

(δ⇒δ)(α, ρ) ◦IR+ (δ⇒δ)(β, τ) = (δ⇒δ)(β ◦ α, λ h . ρ(h ◦ β) ◦IR+ τ(h))

Three more straightforward inductions prove that composition is associative, and that id+ is
both a left and a right unit for composition.

We now explain how each code γ : IR+(C) is interpreted as an endofunctor

JγK : Fam(C)→ Fam(C)

We call a functor which is isomorphic to a functor induced by an IR+ code an IR+ functor.
The semantics of IR+ closely follows the one given in Section 2; as before we make essential use
of coproducts in Fam(C). Having said that, the crucial feature which separates the semantics
of IR+ from the semantics of IR is the following: when explaining the semantics of IR, we
first interpret IR codes as functors and then later define morphisms between codes. We can
then interpret the morphisms as natural transformations between the corresponding functors.
In IR+, the type of codes and the type of morphisms between codes are simultaneously
defined in an inductive-inductive way, and therefore they are also decoded simultaneously
as functors and natural transformations respectively. This is exactly what the elimination
principle for an inductive-inductive definition gives.

In the following theorem, note that there is no restriction on the category C — all
structure that we need comes for free from the families construction Fam.

Theorem 3.3 (IR+ functors). Let C be an arbitrary category.

(i) Every code γ : IR+(C) induces a functor JγK : Fam(C)→ Fam(C).
(ii) Every morphism ρ : IR+(C)(γ, γ′) for codes γ, γ′ : IR+(C) gives rise to a natural

transformation JρK : JγK ·−→ Jγ′K.

Proof. While the action on objects is the same for both IR+ and IR functors, the action
on morphisms is different when interpreting a code of type δAF : in the semantics of IR+

we exploit the fact that F : (A → C) → IR+(C) is now a functor, so that it also has an
action on morphisms (which we, for the sake of clarity, write F→). We give the action of IR+

functors on morphisms only, and refer to the semantics given in Theorem 2.4 for the action
on objects of Fam(C).

The action on morphisms is given as follows. Let (h, k) : (X,P ) → (Y,Q) in Fam(C).
We define JγK(h, k) : JγK(X,P )→ JγK(Y,Q) by recursion on γ:

Jι cK(h, k) = (id1, idc)

JσAfK(h, k) = [ina ◦ Jf aK(h, k)]a :A

JδAF K(h, k) = [inh◦g ◦ JF (Q ◦ h ◦ g)K(h, k) ◦ JF→(g∗(k))K(X,P )]g :A→X

In the last clause g∗(k) : P ◦ g ·−→ Q ◦ h ◦ g is the natural transformation with component
g∗(k)a = kg a : P (g a) → Q(k(g a)); note that such a natural transformation is nothing
but the vertical morphism above A obtained by reindexing (idX , k) along g in the families
fibration π : Fam(C)→ Set.
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We now explain how an IR+ morphism ρ : γ → γ′ is interpreted as a natural transfor-

mation JρK : JγK ·−→ Jγ′K between IR+ functors by specifying the component JρK(X,P ) at
(X,P ) : Fam(C). Naturality of these transformations can be proved by a routine diagram
chase.

J(ι⇒ ι)(f)K(X,P ) = (id1, f)

J(σ⇒σ)(α, ρ)K(X,P ) = [inα(x) ◦ Jρ(x)K(X,P )]x :A

J(δ⇒δ)(α, ρ)K(X,P ) = [ing◦α ◦ Jρ(P◦g)K(X,P )]g:A→X

Remark 3.4. In the conference version of this paper [GMNF13], we considered a different
collection of morphisms; since more morphisms makes it easier to define codes, we tried
to include as many morphisms as possible. As a result, the proof that IR+(C) is a cate-
gory becomes quite long and tedious, although straightforward. In this presentation, we
have instead decided to restrict ourselves to the smallest possible “usable” combination of
morphisms. It should be noted that our results are completely parametric in the choice of
morphisms used; any collection that represents natural transformations between the codes
works, as long as the identity morphisms and composition can be defined. The range spans
all the way from no non-identity morphisms at all (in which case it is rather hard to define
a functor (A→ C)→ IR+(C)!) to taking HomIR+(x, y) = JxK→ JyK, which gives rise to a
full and faithful interpretation by definition. The latter would mean that the interpretation
J−K would need to be defined simultaneously with the codes, with the effect that the very
definition of positive inductive-recursive definitions itself would be inductive-recursive. To
avoid this stronger assumption in the metatheory, we prefer the current formulation, where
the meta-theory only uses inductive-inductive definitions — a much weaker principle.

Let us now return to the examples from the end of Section 2.

Example 3.5 (A universe closed under dependent sums in Fam(Setop)). In Example 2.5,
we defined an ordinary IR code γN,Σ : IR(Set) for a universe closed under sigma types. We
can extend this code to an IR+ code

γN,Σ = ιN +IR δ1(X 7→ δX∗(Y 7→ ιΣ(X∗)Y )) : IR+(Setop)

where now G := Y 7→ ιΣ(X∗)Y and F := X 7→ δX∗G need to be functors. Given f : Y → Y ′

in X → Setop, i.e. an X-indexed collection of morphisms fx : Y (x) → Y ′(x) in Setop, we
have Σx : (X∗).fx : Σ(X∗)Y → Σ(X∗)Y ′ in Setop so that we can define

G(f) : ιΣ(X∗)Y → ιΣ(X∗)Y ′

by G(f) = (ι⇒ ι)(Σx : (X∗).fx).
We also need F to be a functor. Given f : X → X ′ in 1 → Setop, we need to define

F (f) : δX∗G→ δX′∗G. According to Definition 3.1, it is enough to give an α : X ′∗ → X∗ and
a natural transformation ρ from G to G(−◦α). We can choose α = f∗, and ρ to be the natural
transformation whose component at Y : X∗ → Setop is given by ρY = (ι⇒ ι)([inf∗x]x:X′∗),
where [inf∗x]x:X′∗ : Σ(X ′∗)Y ◦ f∗ → Σ(X∗)Y . Notice that working in Setop made sure that
f∗ was going in the right direction.

Example 3.6 (A universe closed under dependent function spaces in Fam(Set
∼=)). In

Example 2.6, we saw how we could use induction-recursion to define a universe closed under
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Π-types in Fam |Set|, using the following code:

γN,Π = ιN +IR δ1(X 7→ δX∗(Y 7→ ιΠ(X∗)Y )) : IR(Set)

If we try to extend this to an IR+ code in Fam(Set) or Fam(Setop), we run into problems.
Basically, given a morphism f : X ′ → X, we need to construct a morphism ΠX ′ (Y ◦ f)→
ΠX Y , which of course is impossible if e.g. X ′ = 0, X = 1, and Y ∗ = 0.

Hence the inherent contravariance in the Π-type means that γN,Π does not extend to

a IR+(Set) or IR+(Setop) code. However, if we move to the groupoid Set
∼=, which is the

subcategory of Set with only isomorphisms as morphisms, we do get an IR+(Set
∼=) code

describing the universe in question, which is still living in a category beyond the strict
category Fam |Set|. It would be interesting to understand the relevance of positive induction-
recursion to Homotopy Type Theory [Uni13] where groupoids and their higher order relatives
play such a prominent role.

4. Stronger elimination principles

From Example 3.5 we know that the IR code γN,Σ defining a universe containing the set of

natural numbers N and closed under Σ-type can be extended to a IR+ code of type IR+(Set
∼=)

or IR+(Setop). Thus, the code γN,Σ can be interpreted as an endofunctor on Fam(Set
∼=) or

on Fam(Setop) respectively. In this section we aim to explore by means of an example what
the elimination principle for IR+ codes can be used for: we show how the simple elaboration
of the code γN,Σ to a code of type IR+(Set

∼=) offers us the possibility to implement a more
sophisticated recursion principle on the universe we are currently building.

Recall that from the perspective of initial algebra semantics, the elimination principle
for a type is captured by the universal property of the initial algebra: if F is an endofunctor
and (µF , inF ) its initial algebra, then we know that for any other algebra (X, f) there exists
a (unique) F -algebra homomorphism αf : µF → X which makes the following diagram
commute:

FµF
in //

F (αg)
��

µF

αg

��
FX g

// X

The initial property of (µF , inF ) thus gives us a definition by recursion into any other type
possessing the right F -algebra structure. By working in Fam(C) instead of Fam |C|, we are
allowing many more algebras compared to ordinary inductive-recursive definitions, or put
differently, we get a stronger elimination principle.

Example 4.1. To see why a stronger elimination principle is sometimes necessary, consider
the initial algebra ((U∗, T ∗), (in0, in1)) for a code γ1,N,Σ : IR+(Set

∼=) representing a universe
containing a set 1 with only one element, the set N of natural numbers and moreover closed
under Σ-types. The universe U∗ contains many codes for “the same” set, up to isomorphism.
For instance, it contains codes for each of the following isomorphic sets:

1 ∼=(Σ1)1 ∼= (Σ1)(Σ1)1 . . .

N ∼=(ΣN)1 ∼= (Σ1)N ∼= (Σ1)(Σ1)N . . .
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Moreover, for each Σ-type the following isomorphism holds:

(Σz : (Σx : A)B(x))C(z) ∼= (Σx : A)(Σy : B(a))C(〈x, y〉) (4.1)

Therefore, for each Σ set with at least two nested Σ’s, U∗ contains a code for both these ways
to parenthesize a Σ-type. It might be advantageous to instead keep a single representative
for each isomorphism class. We might hope to do so using the initiality of (U∗, T ∗), and
indeed, the elimination principle for positive inductive-recursive definitions allows us to do
exactly that.

First of all we need to decide what normal forms for elements in the universe we want.
We can specify this by defining a predicate NF : U∗ → Set on the universe (U∗, T ∗), which
decides if a set is in normal form: we decree that the codes for the sets 1 and N are in normal
form, and a code for ΣAB is in normal form if A is in normal form, B(a) is in normal form
for each a : A, A is not 1, and finally it is of the form of the right hand side of (4.1). There
is of course some room for different choices here. Formally, and employing some cleverness
in how we set things up, we can define the predicate by the elimination principle for U∗ by
the following clauses:

NF(1̂) = >

NF(N̂) = >

NF(Σ̂ 1̂ b) = ⊥

NF(Σ̂ N̂ b) = ∀n : N .NF(b(n))

NF((Σ̂ (Σ̂ a′ b′) b) = ⊥
We now define a new family (UNF, TNF), containing sets in normal forms only, by letting

UNF := (Σu : U∗)NF(u)

TNF(u, p) :=T ∗(u)

We can also define a Fam(Set
∼=) morphism (φ, η) : Jγ1,N,ΣK(UNF, TNF) → (UNF, TNF) which

endows (UNF, TNF) with an Jγ1,N,ΣK-algebra structure. For this, is it crucial that we are

working in Fam(Set
∼=) and not Fam |Set|, since we can only expect that a Σ-type of normal

forms is isomorphic to a normal form, not equal to one; i.e. if A is in normal form, and B(a)
is in normal form for all a : A, then ΣAB is not necessary normal (as e.g. A = 1 shows),
but we can always find a normal form isomorphic to ΣAB. The function φ maps A and B
to this normal form, and η is a proof that it is indeed isomorphic to ΣAB. We only give
the definition of φ : Jγ1,N,ΣK0(UNF, TNF) → UNF here; the definition of η follows the same
pattern.

φ(1̂) = (1̂, ∗)

φ(N̂) = (N̂, ∗)

φ(Σ̂ (1̂, p) b) = (π0b(∗), π1b(∗))

φ(Σ̂ (N̂, p) b) = (Σ̂ N̂ (π0 ◦ b), n 7→ π1(b(n)))

φ(Σ̂ (Σ̂ N̂ b′, p) b) = (Σ̂ N̂ (n 7→ π0(φ(. . .))), (n 7→ π1(φ(. . .))))

where φ(. . .) = φ(Σ̂ (b′(n), p(n))(y 7→ b(n, y)))

φ(Σ̂ (Σ̂ (Σ̂ a b) b′, p) c) impossible case by the def. of NF; we have p : ⊥

φ(Σ̂ (Σ̂ 1̂ b′, p) c) impossible case by the def. of NF; we have p : ⊥
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By initiality of (U∗, T ∗) we get a morphism (nf, correct) making the following diagram
commute:

Jγ1,N,ΣK(U∗, T ∗)
(in0,in1) //

Jγ1,N,ΣK(nf,correct)
��

(U∗, T ∗)

(nf,correct)

��
Jγ1,N,ΣK(UNF, TNF)

(φ,η)
// (UNF, TNF)

The map (nf, correct) recursively computes the normal form for each set in the universe
(U∗, T ∗). Indeed, nf : U∗ → UNF maps each name u of a set T (u) in the universe to the
name of the corresponding set in normal form, while the natural transformation correctu :
T ∗(u) ∼= TNF(nf(u)) ensures that the code actually denotes isomorphic sets. Of course, we
do not get (nf, correct) for free; defining φ and η already amounts to most of the work for
the full definition. The point is rather that initiality in Fam(Set

∼=) is a definitional principle
which allows us to define nf and correct. Furthermore, by using initiality, we can give a
structured definition, where we only have to consider the separate cases in isolation.

Example 4.2. As another example of the use of elimination principles beyond ordinary
inductive-recursive definitions, we can define functions between universes with different
ground sets. Consider two universes U1, U2 closed under the same type-theoretic operations,
but containing different ground sets B1, B2. Given a function B1 → B2, we would like to be
able to extend this function to a function U1 → U2 between all of the two universes. For
example, we could have a universe (UN,Σ, TN,Σ), closed under Σ-types and containing the
natural numbers N, and another universe (UZ,Σ, TZ,Σ) also closed under Σ-types but instead
containing the integers Z as ground set. There ought to exist a function between them in
Fam(Setop) (the contravariance is needed for the negative occurrence of U in the code for
the sigma type), since clearly these two universes are closely related. By the elimination
principle for positive inductive-recursive definitions, it suffices to provide a function between
the ground sets, i.e. a function from Z into N, for instance the absolute value function or
the square function. In detail, every function f : Z→ N induces a Fam(Setop)-morphism

JγN,ΣK(UZ,Σ, TZ,Σ) −→ (UZ,Σ, TZ,Σ)

showing that (UZ,Σ, TZ,Σ) has an JγN,ΣK-algebra structure. Therefore, initiality of (UN,Σ, TN,Σ)
gives us a map (UN,Σ, TN,Σ)→ (UZ,Σ, TZ,Σ) which uses f to recursively compute the embed-
ding of (UN,Σ, TN,Σ) into (UZ,Σ, TZ,Σ).

5. Application: A Concrete Representation of Nested Types

Nested data types [AMU05] have been used to implement a number of advanced data
types in languages which support higher-kinded types, such as the widely-used functional
programming language Haskell. Among these data types are those with constraints, such as
perfect trees [Hin00]; types with variable binding, such as untyped λ-terms [FPT99]; cyclic
data structures [GHUV06]; and certain dependent types [MM04].

A canonical example of a nested data type is Lam : Set → Set defined in Haskell as
follows:

data Lam a = Var a | App (Lam a) (Lam a) | Abs (Lam (Maybe a))
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The type Lam a is the type of untyped λ-terms over variables of type a up to α-equivalence.
Here, the constructor Abs models the bound variable in an abstraction of type Lam a by the
Nothing constructor of type Maybe a, and any free variable x of type a in an abstraction of
type Lam a by the term Just x of type Maybe a; The key observation about the type Lam a

is that elements of the type Lam (Maybe a) are needed to build elements of Lam a so that,
in effect, the entire family of types determined by Lam has to be constructed simultaneously.
Thus, rather than defining a family of inductive types, the type constructor Lam defines a
type-indexed inductive family of types. The kind of recursion captured by nested types is a
special case of non-uniform recursion [Bla00].

On the other hand, ordinary non-nested data types such as List a or Tree a can be
represented as containers [AAG05, Abb03]. Recall that a container (S, P ) is given by a
set S of shapes, together with a family P : S → Set of positions. Each container gives rise
to a functor JS, P KCont : Set → Set defined by JS, P KCont(X) = Σs : S . P (s) → X. Since
also nested data types such as Lam have type Set→ Set, it make sense to ask the following
question: Are nested data types representable as containers? There would be benefits of a
positive answer, since container technology could then be applied to nested data types. For
instance, we could operate on nested types using container operations such as the derivative,
and classify the natural transformations between them. Note in particular that the canonical
recursion operator fold for nested data types is a natural transformation.

We give a positive answer to the above question using IR+. As far as we are aware, this
is a new result. We sketch our overall development as follows:

(i) We define a grammar Nest for defining nested types and a decoding function L−M :
Nest→ (Set→ Set)→ (Set→ Set). The data types we are interested in arise as initial
algebras µLNM for elements N of the grammar.

(ii) We show that LNM restricts to an endofunctor LNMCont : Cont→ Cont on the category
Cont of containers.

(iii) Noting that Cont = Fam(Setop), we use IR+ to define LNMCont. Hence by the results
of this paper, LNMCont has an initial algebra µLNMCont. We finish by arguing that
µLNM = JµLNMContKCont and hence that, indeed, nested types are containers.

A Grammar for Nested Types. We now present a grammar for defining nested data
types. Since our point is not to push the theory of nested data types, but rather to illustrate
an application of positive induction-recursion, we keep the grammar simple. The grammar
we use is

F = Id | K C | F + F | F × F | F ~ F
where C is any container. The intention is that Id stands for the identity functor mapping a
functor to itself, KC stands for the constant functor mapping any functor to the interpretation
of the container C, + and × stand for the coproduct and product of functors respectively,
and ~ for the pointwise composition of functors. These intentions are formalised by a
semantics for the elements of our grammar given as follows

L−M : Nest→ (Set→ Set)→ (Set→ Set)
LIdM F = F
LK CM F = JCKCont
LF0 + F1M F = LF0M F + LF1M F
LF0 ×F1M F = LF0M F × LF1M F
LF0 ~ F1M F = LF0M F ◦ LF1M F
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For example, the functor

L F X = X + (FX × FX) + F (X + 1)

whose initial algebra is the type Lam, is of the form LNLM with

NL = K IC + (Id× Id) + (Id~ (KM))

where IC = (1, 7→ 1) is the container with one shape and one position, representing the
identity functor on Set, and M = (2, x 7→ if x then 1 else 0) is the container with two shapes,
the first one with one position, and the second one with no position. M represents the
functor on Set mapping X to X + 1.

Nested Types as Functors on Containers. The next thing on our agenda is to show
that every element N of Nest has an interpretation as an operator on containers LNMCont :
Cont → Cont, such that LNMCont is the restriction of LNM to the subcategory of functors
that are extension of containers. This is done easily enough by recursion on N , noting that
containers are closed under coproduct, product and composition:

Lemma 5.1 ([AAG05]). Let (S, P ) and (S′, P ′) be containers. Define

(S, P ) + (S′, P ′) := (S + S′, [P, P ′])

(S, P )× (S′, P ′) := (S × S′, (s, s′) 7→ P (s) + P ′(s′))

(S, P ) ◦ (S′, P ′) := (Σs : S . (P (s)→ S′), (s, f) 7→ Σp : P (s) . P ′(f(p)))

We then have

J(S, P ) + (S′, P ′)KCont ∼= JS, P KCont + JS′, P ′KCont
J(S, P )× (S′, P ′)KCont ∼= JS, P KCont × JS′, P ′KCont
J(S, P ) ◦ (S′, P ′)KCont ∼= JS, P KCont ◦ JS′, P ′KCont

Thus, the interpretation LNM indeed restricts to the subcategory Cont:

Proposition 5.2. Define L−MCont : Nest→ Cont→ Cont by

LIdMCont C = C
LK (S, P )MCont C = (S, P )
LF0 + F1MCont C = LF0MCont C + LF1MCont C
LF0 ×F1MCont C = LF0MCont C × LF1MCont C
LF0 ~ F1MCont C = LF0MCont C ◦ LF1MCont C

The following diagram then commutes:

Cont
J−KCont//

LNMCont
��

(Set→ Set)

LNM
��

Cont
J−KCont

// (Set→ Set)
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Coming back to our running example, if we consider the nested code NL for Lam, we have
LNLMCont(S, P ) = (SL, PL) with

SL = 1 + (S × S) + Σs : S. P (s)→ 2
PL (in1 ∗) = 1
PL (in2 (s, s′)) = P (s) + P (s′)
PL (in3 (s, f)) = Σp : P (s). if f(p) then 1 else 0

We see that indeed the positions P show up in the equation for the shape SL, so that
we should expect an inductive-recursive definition to be the initial solution to this set of
equations.

Nested Types are Containers. We know that Cont = Fam(Setop). Now, we want to show
that for every code N : Nest, the functor LNMCont is a IR+ functor: to see this one needs to
carefully examine the constructions on families used to build LNMCont. We will need to show
that we can emulate the identity functor, containers and container product, coproduct and
composition using IR+ codes. Most of these are straightforward, but container composition
will require some sophistication: we will need to observe that all IR+ codes in question
in fact are of a particularly simple, uniform form. We deal with each code in the nested
grammar in turn.

Lemma 5.3 (IR+ codes for Id and K(S, P )).

(i) Jδ1((X : 1→ Setop) 7→ ι(X∗))KC ∼= C.
(ii) JσS(s 7→ ι P (s))KC ∼= (S, P ).

For encoding container coproducts, we can reuse the binary coproducts +IR on IR+ codes
from Example 2.5.

Lemma 5.4 (IR+ codes for N +N ′). Jγ +IR γ
′KC ∼= (JγK0C + Jγ′K0C, [ JγK1C, Jγ′K1C ]).

Emulating products of containers requires a little more work. The basic idea is that
we get the product of two codes γ and γ′ by replacing all occurrences of the terminating
code ι c in the first code γ by the second code γ′, where, in turn, we replace all codes ι c′

with ι (c × c′). In general, we can replace ι c′ with ιG(c, c′) for a functor G : C × C → C.
Formally, we define a functor [ιx 7−→ ιG( , x)] : IR+ × C→ IR+ for such a functor G by

(ιc′)[ι x 7−→ ιG(c, x)] = ιG(c, c′)

(σA f)[ι x 7−→ G(c, x)] = σA (λa . f(a)[ι x 7−→ ιG(c, x)])

(δA F )[ι x 7−→ G(c, x)] = δA (λh . F (h)[ι x 7−→ ιG(c, x)])

See the formal development [GMNF14] for the action on morphisms, which needs to be
defined simultaneously in order to show that F (h)[ι x 7−→ ιG(c, x)] in the δ case again is a
functor. Using this, we can now define the product γ ×G γ′ of two codes with respect to the
functor G:

(ι c)×G γ = γ[ι x 7−→ ιG(c, x)]

(σA f)×G γ = σA(λa . f(a)×G γ)

(δA F )×G γ = δA(λh . F (h)×G γ)

Again, we need to simultaneosuly show that ×G is functorial in order for F (h)× γ in the δ
case to be a functor.

Lemma 5.5. Jγ ×G γ′KC ∼= (JγK0C × Jγ′K0C, (s, s
′) 7→ G(JγK1Cs, JγK1Cs

′)).
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In particular, if we choose G(X,Y ) = X + Y , we recover the container product.
Finally, we get to container composition. Composition of IR+ codes (and IR codes)

is an open problem in general, but since we are interested in emulating composition of
containers, one could hope that there is more structure to be exploited, and this is indeed
the case. The main insight is that all codes in the image of the translation are uniform,
in the sense of unpublished work by Peter Hancock. Intuitively, a IR+ code is uniform
if the shape of the code (i.e. σ/δ/ι followed by σ/δ/ι followed by. . . ) is independent of
the arguments; e.g. σA (λx . σB(x) (λy . δC(x,y) (λz . ι d(x, y, z)))) is uniform, while the code
σN (λx . if x = 17 then δB(λy . ι c(y)) else σC(x) (λy . δD(x,y)(λz . ι d(x, y, z)) is not, since the
shape is sometimes σ-δ-ι and sometimes σ-σ-δ-ι. A precise description and study of uniform
IR+ codes is out of scope of this paper; for further information, we refer to our formal
development [GMNF14].

The main construction that uniform IR+ codes allow, while arbitrary codes seem not
to, is to construct a code for exponentiation of a IR+ code γ with a set K, i.e. a code
K → γ such that JK → γKC ∼= (K → JγK0C, f 7→ Σk : K . JγK1C(f(k))). Note how there
is a sigma type in the decoding of the family; as we have seen in Example 3.5, families
closed under Σ are canonical examples of a IR+ construction. Since the construction of
K → γ depends on the definition of uniform codes, we do not give it here, but refer again
to our Agda formalisation [GMNF14], where we also show that all constructions so far in
this section result in uniform codes (except for the coproduct of codes, whose construction
must be modified slightly). Given such a construction, we can now interpret also container
composition with nested functors as a IR+ code by defining • : Nest → IR+ → IR+ in the
following way:

Id • γ = δ1 (λX .X(∗)→ γ)

K (S, P ) • γ = σS (λs . P (s)→ γ)

(N +N ′) • γ = (N • γ) +IR (N ′ • γ)

(N ×N ′) • γ = (N • γ)×+ (N ′ • γ)

(N ~N ′) • γ = N • (N ′ • γ)

Lemma 5.6. JN • γKC = (LNMContC) ◦ JγKC.

Putting everything together, we arrive at the main theorem of this section.

Theorem 5.7. For every N : Nest, the initial algebra µLNM exists and is a container functor.

Proof. By Lemmas 5.3 to 5.6, LNMCont is an IR+ functor. Hence by the results in Section 7,
it has an initial algebra which is a container (SN , PN ). Since J−KCont preserves initial objects
and filtered colimits of cartesian morphisms (Abbott [Abb03], Propositions 4.5.1 and 4.6.7)
and we know from Lemma 7.1 in Section 7 that the initial algebra chain of an IR+ functor is
made from cartesian morphisms only, we can conclude that J(SN , PN )KCont = µLNM, showing
that all nested types indeed are definable using containers.

6. Comparison to Plain IR

We now investigate the relationship between IR+ and IR. On the one hand we show in
Proposition 6.1 how to embed Dybjer and Setzer’s original coding scheme for IR into IR+;
this way we can see IR as a subsystem of IR+. On the other hand we show in Proposition 6.2
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that on discrete categories, the two schemas agrees having the same functorial interpretation;
thus, using the canonical embedding of the discretisation of a category into itself, we can
build a functor mapping IR+ into IR.

Note that every type D can be regarded as a discrete category, which we by abuse of
notation denote |D|. In the other direction, every category C gives rise to a type |C| whose
elements are the objects of C.

Proposition 6.1. There is a function ϕ : IR(D)→ IR+ |D| such that

Jϕ(γ)KIR+ |D| = JγKIR(D)

Proof. The only interesting case is γ = δA F : IR(D); we define ϕ(δA F ) = δA (ϕ ◦ F ). We
need to ensure that ϕ ◦ F indeed is a functor, but since |D| is a discrete, so is A→ |D|, and
the mapping on objects ϕ ◦ F : (A→ |D|)→ IR+ |D| can trivially be extended to a functor
(A → |D|) → IR+ |D|. It is easy to see that the two semantics do agree: on objects, the
action is the same, and if (h, id) is a morphism in Fam |D|, we see from the definition of
JδA F KIR+ |D|(h, k) in the proof of Theorem 3.3 that

JδA (ϕ ◦ F )KIR+ |D|(h, id) = [inh◦g ◦ Jϕ(F (Q ◦ h ◦ g)K(h, id) ◦ J(ϕ ◦ F )→(g∗(id))K(X,P )]g :A→X

= [inh◦g ◦ Jϕ(F (Q ◦ h ◦ g)K(h, id)]g :A→X

= [inh◦g ◦ JF (Q ◦ h ◦ g)KIR(D)(h, id)]g :A→X

= JδA F KIR(D)

where J(ϕ ◦ F )→(g∗(id))K(X,P ) = id since J(ϕ ◦ F )(−)K(X,P ) is a functor.

This proposition shows that the theory of IR can be embedded in the theory of IR+.
Some readers might perhaps be surprised that we only define a function IR(D)→ IR+ |D|,
and not a functor. The reason is the mismatch of morphisms between IR(D) and IR+ |D|;
because IR(D) has a full and faithful embedding into Fam |D| → Fam |D|, whereas IR+ |D|
has not, there are necessarily morphisms in IR(D) that have no counterpart in IR+ |D|.
Going the other way, we are more successful, and can make the previous result more precise:
using the functoriality of Fam (Remarks 2.3), we can embed Fam |C| into Fam(C). We can
then show that forgetting about the extra structure of C in IR+ simply gets us back to plain
IR.

Proposition 6.2. Let ε : |C| → C the canonical embedding of the discretisation of a category
C into itself. There is a functor ψ : IR+C→ IR |C| such that for all γ : IR+C

Fam(ε) ◦ Jψ(γ)KIR |C| ∼= JγKIR+(C) ◦ Fam(ε) (?)

Furthermore, ψ ◦ ϕ = id, where ϕ : IR(C)→ IR+ |C| is the function from Proposition 6.1.

Proof. We define the functor ψ : IR+(C) → IR |C| by recursion on the structure of γ. On
objects, ψ is defined as follows:

ψ(ι c) = ι c

ψ(σAf) = σA(a 7→ ψ(f a))

ψ(δAF ) = δA(X 7→ ψ(F (ε ◦X)))

We now use full and faithfulness of the interpretation functor J KIR |C|, as proved in Ghani

et al. [GHM+13], to let the function ψ act on morphisms as well as on objects. Since the two
interpretation functors agree on objects, i.e. JγK(X,P ) = Jψ(γ)KIR |C|(X,P ), a IR+ morphism
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ρ : γ → γ′ corresponds to a natural transformation JρK : Jψ(γ)KIR |C|
·→ Jψ(γ′)KIR |C|. By full

and faithfulness of J KIR |C| such a natural transformation corresponds to an IR morphism
ψ(γ) → ψ(γ′) which we take as the definition of ψ(ρ). Similarly, full and faithfulness of
J KIR |C| ensure that composition and identity are preserved by ψ, which is therefore a functor.

We are left with checking that (?) holds for morphisms. Recall from Remarks 2.3
that a morphism in Fam |C| correspond to a split cartesian morphism in Fam(C), i.e one
whose second component is an identity. Thus, to verify (?) it is enough to check that
JγK preserves such split cartesian morphisms. The interesting case is γ = δAF . Let
(h, id) : (X,P ◦ h)→ (Y, P ) be a morphism in Fam |C|. We have

JδAF K(h, id) = [inh◦g ◦ JF (P ◦ h ◦ g)K(h, id) ◦ JF→(g∗(id))K(X,P )]g :A→X

= [inh◦g ◦ JF (P ◦ h ◦ g)K(h, id)]g :A→X

where JF (g∗id)K(X,P ) = id since g∗, F and J K are functors. By the induction hypothesis,
each JF (P ◦ h ◦ g)K(h, id) is split cartesian. Furthermore injections are split cartesian in
Fam(C), and since compositions and cotuplings of split cartesian morphisms are still split
cartesian in Fam(C) we conclude that JδA F K(h, id) indeed is a split cartesian morphism as
required.

Finally, since ε is the identity on discrete categories the two schemas agrees on discrete
categories and we automatically get ψ ◦ ϕ = id.

7. Existence of Initial Algebras

We briefly revisit the initial algebra argument used by Dybjer and Setzer [DS99]. Inspecting
their proof, we see that it indeed is possible to adapt it also for the more general setting of
positive inductive-recursive definitions by making the appropriate adjustments.

Remember that a morphism (h, k) : (U, T ) → (U, T ′) in Fam(C) is a split cartesian
morphism if k = idT , i.e. T ′ ◦ h = T , and that Fam |C| is the subcategory (subfibration)
of Fam(C) with the same objects, but with morphisms the split cartesian ones only. The
proof of existence of initial algebras for IR functors as given by Dybjer and Setzer [DS99]
takes place in the category Fam |C|. The hard work of the proof is divided between two
lemmas. First Dybjer and Setzer prove that an IR functor JγK preserves κ-filtered colimits
if κ is an inaccessible cardinal which suitably bounds the size of the index sets in the
image of the filtered diagram. Secondly they use the assumption of the existence of a large
cardinal, namely a Mahlo cardinal, to prove that such a cardinal bound for the index sets can
actually be found. The exact definition of when a cardinal is a Mahlo cardinal will not be
important for the current presentation; see Dybjer and Setzer [DS99], or the second author’s
thesis [Mal15] for how this assumption is used. The existence of an initial algebra then
follows a standard argument: the initial algebra of a κ-continuous functor can be constructed
as the colimit of the initial chain up to κ iterations (see e.g. Adámek et al. [AMM10]).

Inspecting the proofs, we see that they crucially depend on morphisms being split
cartesian in several places. Luckily, the morphisms involved in the corresponding proofs
for IR+ actually are! As is well-known, a weaker condition than κ-continuity is actually
sufficient: it is enough that the functor in question preserve the specific colimit of the initial
κ-chain. We thus show that the initial chain of a IR+ functor actually lives in Fam |C|, which
will allow us to modify Dybjer and Setzer’s proof accordingly.
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Lemma 7.1. For each γ : IR+ C, the initial chain

0→ JγK(0)→ JγK2(0)→ . . .

consists of split cartesian morphisms only.

Proof. Recall that the connecting morphisms ωj,k : JγKj(0) → JγKk(0) are uniquely deter-
mined as follows:

• ω0,1 = !JγK(0) is unique.

• ωj+1,k+1 is JγK(ωj,k) : JγK(JγKj(0))→ JγK(JγKk(0)).
• ωj,k is the colimit cocone for j a limit ordinal.

We prove the statement by induction on j. It is certainly true that !JγK(0) : (0, !)→ JγK(0) is
an identity at each component — there are none. Thus ω0,1 is a split cartesian morphism.
At successor stages, we apply Proposition 6.2 and the induction hypothesis. Finally, at limit
stages, we use the fact that the colimit lives in Fam |C| and hence coincides with the colimit
in that category on split cartesian morphisms, so that the colimit cocone is split cartesian.

Inspecting Dybjer and Setzer’s original proof, we see that it now goes through also for
IR+ if we insert appeals to Lemma 7.1 where necessary. To finish the proof, we also need
to ensure that Fam(C) has κ-filtered colimits; this is automatically true if C has all small
connected colimits (compare Remarks 2.3), since Fam(C) then is cocomplete. Note that
discrete categories have all small connected colimits for trivial reasons.

Theorem 7.2. Assume that a Mahlo cardinal exists in the meta-theory. If C has connected
colimits, then every functor JγK for γ : IR+ C has an initial algebra.

8. Conclusions and Future Work

In this paper we have introduced the theory IR+ of positive inductive-recursive definitions as a
generalization of Dybjer and Setzer’s theory IR of inductive-recursive definitions [DS99, DS03,
DS06], different from the fibrational generalization explored in Ghani et al. [GMNFS13]: by
modifying both syntax and semantics of IR we have been able to broaden the semantics to all
of Fam(C) and not just Fam |C|. The theory of IR+, with IR as a subtheory, paves the way
to the analysis of more sophisticated data types which allow not only for the simultaneous
definition of an inductive type X and of a recursive function f : X → D, but also takes the
intrinsic structure between objects in the target type D into account. This is the case for
example when D is a setoid, the category Set or Setop, a groupoid or, even more generally,
an arbitrary category C.

In future work we aim to explore the theory of IR+ from a fibrational perspective:
this will allow us to reconcile the theory of IR+ with the analysis of IR as given in
Ghani et al. [GMNFS13]. In particular this will amount to characterising the seman-
tics of δ codes as left Kan extensions. An open problem for both IR+ and IR is the question
whether the definable functors are closed under composition, i.e. if there is a code γ ◦γ′ such
that Jγ ◦ γ′K ∼= JγK ◦ Jγ′K for all codes γ and γ′. Another interesting direction of research is
to investigate to which extent the rich structure of the families construction Fam will help
shed light on the analysis of IR+ types: in particular to exploit the monadic structure of
Fam and then to investigate the relationship between the theory of IR+ and the theory of
familial 2-functors introduced by Weber [Web07].
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