
Positive Inductive-Recursive Definitions

Neil Ghani1, Lorenzo Malatesta1, and Fredrik Nordvall Forsberg2

1 University of Strathclyde, UK
2 Swansea University, UK

Abstract. We introduce a new theory of data types which allows for the
definition of data types as initial algebras of certain functors FamC →
FamC. This theory, which we call positive inductive-recursive definitions,
is a generalisation of Dybjer and Setzer’s theory of inductive-recursive
definitions within which C had to be discrete – our work can therefore
be seen as lifting this restriction. This is a substantial endeavour as we
need to not only introduce a type of codes for such data types (as in
Dybjer and Setzer’s work), but also a type of morphisms between such
codes (which was not needed in Dybjer and Setzer’s development). We
show how these codes are interpreted as functors on FamC and how these
morphisms of codes are interpreted as natural transformations between
such functors. We then give an application of positive inductive-recursive
definitions to the theory of nested data types. Finally we justify the
existence of positive inductive-recursive definitions by adapting Dybjer
and Setzer’s set-theoretic model to our setting.

1 Introduction

Inductive types are the bricks of a dependently typed programming language:
they represent the building blocks on which any other type is built. The mortar
the dependently typed programmer has at her disposal for computation with
dependent types is recursion. Usually, a type A is defined inductively, and then
terms or types can be defined recursively over the structure of A. The theory
of inductive-recursive definitions [7,8] explores the simultaneous combination of
these two basic ingredients, pushing the limits of the theoretical foundations of
data types.

The key example of an inductive-recursive definition is Martin-Löf’s universe à la
Tarski [19]. A type U consisting of codes for small types is introduced, together
with a decoding function T , which maps codes to the types they denote. The
definition is both inductive and recursive; the type U is defined inductively, and
the decoding function T is defined recursively on the way the elements of U are
generated. The definition needs to be simultaneous, since the introduction rules
for U refer to T . We illustrate this by means of a concrete example: say we want
to define a data type representing a universe containing a name for the natural
numbers, closed under Σ-types. Such a universe will be the smallest family of

sets (U, T) satisfying the following equations

U = 1 + Σ u :U. Tu→ U
T (inl ∗) = N
T (inr (u, f)) = Σx :Tu. T (fx)

(1)

In this definition we see how ground types and the type constructor Σ are reflected
in U . The left summand of the right hand side of the equation defining U is a
code for natural numbers, while the right summand is a code reflecting Σ-types.
Indeed the name of a Σ-type, ΣAB for A : Set, B : A → Set, in the universe
(U, T) will consists of a name in U for the type A, i.e. an element u :U , and a
function f : Tu→ U representing the A-indexed family of sets B. The decoding
function T maps elements of U according to the description above: the code
for natural numbers decodes to the set of natural numbers N while an element
(u, f) of the right summand decodes to the Σ-type it denotes. Other examples of
inductive-recursive definitions have also appeared in the literature, such as e.g.
Martin-Löf’s computability predicates [18] or Aczel’s Frege structures [3]. Lately
the use of inductive-recursive definitions to encode invariants in ordinary data
structures has also been considered [11].

Dybjer’s [7] insight was that these examples are instances of a general notion,
which Dybjer and Setzer [8] later found a finite axiomatisation of. Their theory of
inductive-recursive definitions IR consists of: (i) a representation of types as initial
algebras of functors; (ii) a grammar for defining such functors. Elements of the
grammar are called IR codes, while functors associated to IR codes are called IR
functors. The theory naturally covers simpler inductive types such as lists, trees,
vectors, red-black trees etc. as well. Dybjer and Setzer [9] then gave an initial
algebra semantics for IR codes by showing that IR functors are naturally defined
on the category FamD of families of elements of a (possibly large) type D and
that these functors do indeed have initial algebras. More generally, abstracting on
the families construction and the underlying families fibration π : FamD → Set,
we have recently shown how to interpret IR functors in an arbitrary fibration
endowed with the appropriate structure [15]. In this article, we will only consider
the families fibration.

There is, however, a complication. When interpreting IR functors such as those
building universes closed under dependent products, the mixture of covariance
and contravariance intrinsic in the Π operator forces one to confine attention to
functors Fam |C| → Fam |C| or, equivalently, to work with only those morphisms
between families which are commuting triangles. As we have shown [15], more
abstractly, this corresponds to working in the split cartesian fragment of the
families fibration π : FamC → Set, i.e. to only consider those morphisms in
FamC which represent strict reindexing. In this paper we remove this constraint
and hence explore a further generalization of IR, orthogonal to the one proposed
in Ghani et al. [15]. We investigate the necessary changes of IR needed to provide
a class of codes which can be interpreted as functors FamC→ FamC. This leads
us to consider a new variation IR+ of inductive-recursive definitions which we
call positive inductive-recursive definitions. The most substantial aspect of this

new theory is that in order to define these new codes, one needs also to define
the morphisms between those codes. This is no handle-turning exercise!

We first recall Dybjer and Setzer’s theory of inductive-recursive definitions
(Section 2). To develop the theory we then (i) introduce a syntax and semantics
consisting of IR+ codes and their morphisms, and an explanation how these codes
are interpreted as functors FamC → FamC, where C is an arbitrary category
(Section 3); (ii) use positive inductive-recursive definitions to shed new light on
nested data types (Section 4); (iii) give a detailed comparison with the existing
theory of IR (Section 5); (iv) adapt Dybjer and Setzer’s model construction to
our setting (Section 6).

The paper uses a mixture of categorical and type theoretic constructions. However,
the reader should bear in mind that the foundations of this paper are type
theoretic. In other words, all constructions should be understood to take place
in extensional Martin-Löf type theory with one universe Set. This is entirely
standard in the literature. The one exception is the use of a Mahlo cardinal
required to prove that positive inductive recursive functors have initial algebras in
Section 6. It should be emphasised that the Mahlo cardinal is only used to justify
the soundness of the theory, and does not play any computational role. We refer
the interested reader to Dybjer and Setzer [8] – they use a Mahlo cardinal for
the same purpose – for the technical details. We also use fibrational terminology
occasionally when we feel it adds insight, but those not familiar with fibrations
can simply ignore such comments.

2 Induction Recursion

The original presentation of induction recursion given by Dybjer [7] was as a
schema. Dybjer and Setzer [8] further developed the theory to internalize the
concept of an inductive-recursive definition. They developed a finite axioma-
tization of the theory through the introduction of a special type of codes for
inductive-recursive definitions. The following axiomatization which closely follows
Dybjer and Setzer [8] presents the syntax of IR as an inductive definition.

Definition 1 (IR codes). Let D : type. The type of IR(D) codes has the following
constructors:

d : D
ι d : IR(D)

A : Set f : A→ IR(D)

σAf : IR(D)

A : Set F : (A→ D)→ IR(D)

δAF : IR(D)

This is the syntax of induction recursion – it is quite remarkable in our opinion
that this most powerful of theories of data types can be presented in such a

simple fashion. These rules have been written in natural-deduction style and we
may use the ambient type theory to define, for example, the function f in the
code σAf . An example of an IR code is given in Example 5 – this code represents
the universe containing the natural numbers and closed under Σ-types given in
Equation (1). We now turn to the semantics of induction recursion: we interpret
IR codes as functors, and to this end, we use the standard families construction
Fam from category theory. We start recalling the definition of the category FamC
of families of objects of a category C.

Definition 2. Given a category C, the category FamC has objects pairs (X,P)
where X is a set and P : X → C is a functor which we can think of as an X-
indexed family of objects of C. A morphism from (X,P) to (Y,Q) is a pair (h, k)

where h : X → Y is a function, and k : P
·→ Q ◦ h is a natural transformation.

Of course, the naturality condition in the definition of a morphism of families is
vacuous as the domains of the functors in question are discrete.

Remark 3. For any category C, the category FamC always has rich structure:

– FamC is fibred over Set (see e.g. Jacobs [16]). We omit here the definitions,
but recall the standard splitting cleavage of the fibration π : FamC → Set
which is relevant later: a morphism (h, k) : (X,P)→ (Y,Q) is a split cartesian
morphism if k is a family of identity morphisms, i.e. if Q = P ◦ h.

– FamC is the free set indexed coproduct completion of C; that is FamC has
all set indexed coproducts and there is an embedding C→ FamC universal
among functors F : C→ D where D is a category with set indexed coproducts.
Given an A-indexed collection of objects (Xa, Pa)a :A in FamC, its A-indexed
coproduct is the family (

∑
a :AXa, [Pa]a :A).

– FamC is cocomplete if and only if C has all small connected colimits (Carboni
and Johnstone [6, dual of Prop. 2.1]).

– Fam is a functor CAT→ CAT; given F : C→ D, we get a functor Fam(F) :
FamC→ FamD by composition: Fam(F)(X,P) = (X,F ◦ P). Here CAT is
the category of large categories.

When C is a discrete category every morphism between families (X,P) and (Y,Q)
consists only of functions h : X → Y such that P x = Q (hx) for all x in X. From
a fibrational perspective, this amounts to the restriction to the split cartesian
fragment Fam |C| of the fibration π : FamC→ Set, for C an arbitrary category.
This observation is crucial for the interpretation of IR codes as functors. Indeed,
given a type D, which we think of as the discrete (possibly large) set of its terms,
we interpret IR codes as functors FamD → FamD.

Theorem 4 (IR functors). Let D : type. Every code γ : IR(D) induces a functor

JγK : FamD → FamD

Proof. We define JγK : FamD → FamD by induction on the structure of the
code. We first give the action on objects:

Jι cK(X,P) = (1, λ . c)

JσA fK(X,P) =
∑
a :A

Jf aK(X,P)

JδA F K(X,P) =
∑

g :A→X
JF (P ◦ g)K(X,P)

We now give the action on morphisms. Let (h, id) : (X,P) → (Y,Q) be a
morphism in FamD, i.e. h : X → Y and Q ◦ h = P .

Jι cK(h, id) = (id1, id)

JσA fK(h, id) = [ina ◦ Jf aK(h, id)]a :A

JδA F K(h, id) = [inh◦g ◦ JF (Q ◦ h ◦ g)K(h, id)]g :A→X

Here, the last line type checks since Q ◦ h = P , hence Q ◦ h ◦ g = P ◦ g and we
can apply the induction hypothesis. ut

Note how the interpretation of both σ and δ codes makes essential use of
coproducts of families as defined in Remark 3. In particular, the interpretation
of a code δBF uses as index set of the coproduct the function space (B → X),
which is a set since both B and X are.

Ghani et al. [14] introduces morphisms between IR codes. This makes IR(D) into
a category, and the decoding J−K : IR(D)→ [FamD,FamD] can be shown to be
a full and faithful functor. We will draw inspiration from this in Section 3 when
we generalise the semantics to endofunctors on FamC for possibly non-discrete
categories C.

We call a data type inductive-recursive if it is the initial algebra of a functor
induced from an IR code. Let us look at some examples.

Example 5 (A universe closed under dependent sums). In the introduction, we
introduced a universe in Equation (1), containing the natural numbers and closed
under Σ-types, and claimed that this universe can be defined via an inductive-
recursive definition. Indeed, one can easily write down a code γN,Σ : IR(Set) for a
functor that will have such a universe as its initial algebra:

γN,Σ := ιN +IR δ1(X 7→ δX∗(Y 7→ ιΣ(X∗)Y)) : IR(Set)

Here we have used γ +IR γ
′ := σ2 (0 7→ γ; 1 7→ γ′) to encode a binary coproduct

as a 2-indexed coproduct. Also, in the above, note that X : 1→ Set and so X∗
is simply the application of X to the canonical element of 1. If we decode γN,Σ ,
we get a functor which satisfies

JγN,ΣK(U, T) ∼= (1, λ .N) + (Σu :U . T (u)→ U, λ(u, f).Σ x :T (u) . T (f(x)))

= (1 +Σu :U . T (u)→ U, inl 7→ N; inr(u, f) 7→ Σ x :T (u) . T (f(x)))

so that the initial algebra (U, T) of JγN,ΣK, which satisfies (U, T) ∼= JγN,ΣK(U, T)
by Lambek’s Lemma, indeed satisfies Equation (1).

Example 6 (A universe closed under dependent function spaces). In the same
way, we can easily write a down a code for a universe closed under Π-types:

γN,Π := ιN +IR δ1(X 7→ δX∗(Y 7→ ιΠ(X∗)Y)) : IR(Set)

Even though this looks extremely similar to the code in the previous example, we
will see in the next section that there is a big semantic difference between them.

3 Positive Inductive-Recursive Definitions

Theorem 4 tells us that IR codes can be interpreted as functors on families built
over a discrete category. What happens if we try to interpret IR codes on the
category FamC, and not just on the subcategory Fam |C|? The problem is that
if we allow for more general morphisms, we can not prove functoriality of the
semantics of a δ code as it stands anymore: it is essential to have an actual
equality on the second component of a morphism in FamC in order to have a
sound semantics (see Example 10 below).

In this section we propose a new axiomatization which enables us to solve this
problem. This new theory, which we dub positive inductive-recursive definitions,
abbreviated IR+, represents a generalization of IR which allows the interpretation
of codes as functors defined on FamC.

3.1 Syntax and Semantics of IR+(C)

The crucial insight which guides us when introducing the syntax of IR+ is to
deploy proper functors in the introduction rule of a δ code. This enables us
to remove the restriction on morphisms within inductive recursive definitions;
indeed, if we know that F : (A → C) → IR+(C) is a functor, and not just a
function, we do not have to rely on the equality P ◦ g = Q ◦h ◦ g between objects
in CA, but we can use the second component of a morphism (h, k) in FamC to
get a map P ◦ g → Q ◦ h ◦ g; then we can use the fact that F is a functor to get
a morphism between codes F (P ◦ g)→ F (Q ◦ h ◦ g).

But, now we have to roll up our sleeves. For F : (A → C) → IR+(C) to be a
functor, we need both A→ C and IR+(C) to be categories. While it is clear how
to make A→ C a category, turning IR+(C) into a category entails defining both
codes and morphisms between codes simultaneously, in an inductive-inductive
fashion [21]. We give an axiomatic presentation of IR+ analogously to the one
given in Section 2 for the syntax of IR; however we now have mutual introduction
rules to build both the type of IR+(C) codes and the type of IR+(C) morphisms,
for C a given category. The semantics we give then explains how IR+(C) codes
can be interpreted as functors on FamC, while IR+(C) morphisms between such
codes can be interpreted as natural transformations.

Definition 7. Given a category C we simultaneously define the type of positive
inductive-recursive codes on C, IR+(C) : type and the type of morphisms between
these codes IR+(C)(,) : IR+(C)→ IR+(C)→ type as follows:

– IR+(C) codes:
c : C

ι c : IR+(C)

A : Set f : A→ IR+(C)

σAf : IR+(C)

A : Set F : (A→ C)→ IR+(C)

δAF : IR+(C)

– IR+(C) morphisms:

• morphisms from ιc:

f : C(c, c′)

Γι,ι(f) : IR+(C)(ι c, ι c′)

a : A r : IR+(C)(ι c, fa)

Γι,σ(a, r) : IR+(C)(ι c, σAf)

g : A→ ∅ r : IR+(C)(ι c, F (! ◦ g))

Γι,δ(g, r) : IR+(C)(ι c, δAF)

• morphisms from σAf :

γ, : IR+(C) r : (a : A)→ IR+(C)(fa, γ)

Γσ,γ(r) : IR+(C)(σAf, γ)

• morphisms from δAF

ρ : Nat(F, κιc)

Γδ,ι(ρ) : IR+(C)(δAF, ι c)

b : B ρ : Nat(F, κf b)

Γδ,σ(b, ρ) : IR+(C)(δAF, σAf)

g : B → A ρ : Nat(F,G(− ◦ g))

Γδ,δ(g, ρ) : IR+(C)(δAF, δBG)

In the last three clauses we have indicated with κγ : CA → IR+(C) the constant
functor with value γ.

We now explain how each code γ : IR+(C) is interpreted as an endofunctor

JγK : FamC→ FamC

A functor which is isomorphic to a functor induced by an IR+ code is called an
IR+ functor. The semantics of IR+ closely follows the one given in Section 2; as
before we make essential use of coproducts in FamC. Having said that, the crucial
feature which separates the semantics of IR+ from the semantics of IR is the
following: when explaining the semantics of IR we can first interpret IR codes as
functors and only later we define morphisms between codes which are interpreted
as natural transformations between the corresponding functors. In IR+ the type
of of codes and the type of morphisms between codes are simultaneously defined
in an inductive-inductive way, and therefore they are also decoded simultaneously
as functors and natural transformations respectively. This is exactly what the
elimination principle for an inductive-inductive definition gives.

In the following theorem, note that there is no restriction on the category C – all
structure that we need comes for free from the families construction Fam.

Theorem 8 (IR+ functors). Let C be an arbitrary category.

(i) Every code γ : IR+(C) induces a functor JγK : FamC→ FamC.
(ii) Every morphism r : IR+(C)(γ, γ′) for codes γ, γ′ : IR+(C) gives rise to a

natural transformation JrK : JγK ·−→ Jγ′K.

Proof. While the action on objects is the same for both IR+ and IR functors, the
action on morphisms is different when interpreting a code of type δAF : in the
semantics of IR+ we exploit the fact that F : (A→ C)→ IR+(C) is now a functor
by using its action on morphism (which we, for the sake of clarity, indicate with
F→). We give the action of IR+ functors on morphisms only, and refer to the
semantics given in Theorem 4 for the action on objects of FamC.

The action on morphisms is given as follows. Let (h, k) : (X,P) → (Y,Q) in
FamC. We define JγK(h, k) : JγK(X,P)→ JγK(Y,Q) by recursion on γ:

Jι cK(h, k) = (id1, idc)

JσAfK(h, k) = [ina ◦ Jf aK(h, k)]a :A

JδAF K(h, k) = [inh◦g ◦ JF (Q ◦ h ◦ g)K(h, k) ◦ JF→(g∗(k))K(X,P)]g :A→X

In the last clause g∗(k) : P ◦ g ·−→ Q ◦ h ◦ g is the natural transformation with
component g∗(k)a = kg a : P (g a) → Q(k(g a)); note that such a natural trans-
formation is nothing but the vertical morphism above A obtained by reindexing
(idX , k) along g in the families fibration π : FamC→ Set.

We now explain how a IR+ morphism r : γ → γ′ is interpreted as natural trans-
formation JrK : JγK ·−→ Jγ′K between IR+ functors by specifying the component
JrK(X,P) at (X,P) : FamC. Naturality of these transformations can be proved by

a routine diagram chasing.

JΓι,ι(f)K(X,P) = (id1, f)

JΓι,σ(a, r)K(X,P) = ina ◦ JrK(X,P)

JΓι,δ(g, r)K(X,P) = in!X◦g ◦ JrK(X,P)

JΓσ,γ(r)K(X,P) = [Jr aK(X,P)]a :A

JΓδ,ι(ρ)K(X,P) = [JρP◦gK(X,P)]g:A→X

JΓδ,σ(b, ρ)K(X,P) = inb ◦ [JρP◦gK(X,P)]g:A→X

JΓδ,δ(f, ρ)K(X,P) = [ing◦f ◦ JρP◦gK(X,P)]g:A→X

ut

Example 9 (A universe closed under dependent sums in FamSetop). In Example 5,
we defined an ordinary IR code γN,Σ : IR(Set) for a universe closed under sigma
types. We can extend this code to an IR+ code

γN,Σ = ιN +IR δ1(X 7→ δX∗(Y 7→ ιΣ(X∗)Y)) : IR+(Setop)

where now G := Y 7→ ιΣ(X∗)Y and F := X 7→ δX∗G needs to be functors.
Given f : Y → Y ′ in X → Setop, i.e. fx : Y (x) → Y ′(x) in Setop, we have
Σx : (X∗).fx : Σ(X∗)Y → ιΣ(X∗)Y ′ in Setop so that we can define

G(f) : ιΣ(X∗)Y → ιΣ(X∗)Y ′

by G(f) = Γι,ι(Σx : (X∗).fx).

We also need F to be a functor. Given f : X → X ′ in 1 → Setop, we need to
define F (f) : δX∗G → δX′∗G. According to Definition 7, it is enough to give
f∗ : X ′∗ → X∗ and [inf∗x]x:X′∗, a natural transformation from G to G(− ◦ f∗).
Notice that working in Setop made sure that f∗ was going in the right direction.

Example 10 (A universe closed under dependent function spaces in FamSet
∼=).

In Example 6, we saw how we could use induction-recursion to define a universe
closed under Π-types in Fam |Set|, using the following code:

γN,Π = ιN +IR δ1(X 7→ δX∗(Y 7→ ιΠ(X∗)Y)) : IR(Set)

If we try to extend this to an IR+ code in FamSet or FamSetop, we run into
problems. Basically, given a morphism f : X ′ → X, we need to construct a
morphism ΠX ′ (Y ◦ f)→ ΠX Y , which of course is impossible if e.g. X ′ = 0,
X = 1, and Y ∗ = 0.

Hence the inherent contravariance in the Π-type means that γN,Π does not
extend to a IR+(Set) or IR+(Setop) code. However, if we move to the groupoid
Set
∼=, which is the subcategory of Set with only isomorphisms as morphisms,

we do get an IR+(Set
∼=) code describing the universe in question, which is still

living in a category beyond the strict category Fam |Set|. It would be interesting
to understand the relevance of positive induction recursion to homotopy type
theory.

4 Application: A Concrete Representation of Nested
Types

Nested data types [2] have been used to implement a number of advanced data
types in languages which support higher-kinded types, such as the widely-used
functional programming language Haskell. Among these data types are those
with constraints, such as perfect trees [22]; types with variable binding, such as
untyped λ-terms [12]; cyclic data structures [13]; and certain dependent types [20].

A canonical example of a nested data type is Lam : Set→ Set defined in Haskell
as follows:

data Lam a = Var a | App (Lam a) (Lam a) | Abs (Lam (Maybe a))

The type Lam a is the type of untyped λ-terms over variables of type a up
to α-equivalence. Here, the constructor Abs models the bound variable in an
abstraction of type Lam a by the Nothing constructor of type Maybe a, and any
free variable x of type a in an abstraction of type Lam a by the term Just x of
type Maybe a; The key observation about the type Lam a is that elements of the
type Lam (Maybe a) are needed to build elements of Lam a so that, in effect, the
entire family of types determined by Lam has to be constructed simultaneously.
Thus, rather than defining a family of inductive types, the type constructor Lam
defines an type-indexed inductive family of types. The kind of recursion captured
by nested types is a special case of non-uniform recursion [5].

This section asks the question Are nested data types representable as containers?
There would be benefits of a positive answer in that one could then apply container
technology to nested data types, e.g. one could classify the natural transformations
between them and operate on them using, for example, the derivative. While the
latter has clear practical importance, note that the canonical recursion operator
fold associated to inductive types is, when analysed for nested data types, a
natural transformation.

We give a positive answer to the above question using IR+. We sketch our overall
development as follows:

– we define a grammar Nest for defining nested types and a decoding function
L−M : Nest→ [Set,Set]→ [Set,Set].

– We show that LNM restricts to an endofunctor LNMCont on the category Cont
of containers.

– We use IR+ to define LNMCont. Hence by the results of this paper, LNMCont has
an initial algebra µLNMCont. We finish by arguing that µLNM = JµLNMContKCont
and hence that, indeed, nested types are containers.

A Grammar for Nested Types. We now present a grammar for defining
nested data types. It is not the most sophisticated grammar, since our point is
not to push the theory of nested data types, but rather to illustrate an application

of positive induction-recursion to nested data types. The grammar we use is

F = Id | K C | F + F | F × F | F ~ F

where C is any container. The intention is that Id stands for the identity functor
mapping a functor to itself, KC stands for the constant functor mapping any
functor to the interpretation of the container C, + stands for the coproduct of
functors, × for the product of functors and ~ for the pointwise composition of
functors. These intentions are formalised by a semantics for the elements of our
grammar given as follows

L−M : Nest→ [Set,Set]→ [Set,Set]
LIdM F = F
LK CM F = JCKCont
LF + F1M F = LFM F + LF1M F
LF × F1M F = LFM F × LF1M F
LF ~ F1M F = LFM F ◦ LF1M F

For example, the functor

L F X = X + (FX × FX) + F (X + 1)

whose initial algebra is the type Lam is of the form LNLM where

NL = Kid + (Id× Id) + Id~ (KM)

where id is the container with one shape and one position which represents the
identity functor on Set, and M is the container with two positions having one
shape above one position and no shapes above the other. M represents the functor
on Set mapping X to X + 1.

Nested Types as Functors on Containers. The next thing on our agenda
is to show that every element N of Nest has an interpretation as an operator on
containers LNMCont : Cont→ Cont.

Cont
J−KCont //

LNMCont
��

[Set,Set]

LNM
��

Cont
J−KCont

// [Set,Set]

This is done easily enough by recursion on N noting that containers are closed
under coproduct, product and under composition. Thus, for example, if we define
LNLMCont(S, P) to be the container (SL, PL) then

SL = 1 + (S × S) +Σs : S. Ps→ 2
PL (in1 ∗) = 1
PL (in2 (s, s′)) = Ps+ Ps′

PL (in3 (s, f)) = Σp : Ps. if fp then 1 else 0

Nested Types are Containers. We know that Cont = FamSetop. Now, we
want to show that for every code N : Nest, the functor LNMCont is a IR+ functor:
to see this one needs to carefully examine the constructions on families used
to build LNMCont. The only sophisticated construction is the use of Σ-types to
model the composition operator used in the definition of nested types and seen
in the definition of SL and PL. But, as we have seen in Example 9, families
closed under Σ are canonical examples of a IR+ construction. Thus, by the
results in Section 6, for every N : Nest, the IR+ functor LNMCont has an initial
algebra which is a container (SN , PN). Finally, since J−KCont preserves initial
objects and filtered colimits of cartesian morphisms ([1] Propositions 4.5.1 and
4.6.7) and we know from Lemma 14 in Section 6 that the initial algebra chain
of an IR+ functor is made from cartesian morphisms only, we can conclude that
J(SN , PN)KCont = µLNM showing that all nested types indeed are definable using
containers.

5 Comparison to Plain IR

We now investigate the relationship between IR+ and IR. Note that every type D
can be regarded as a discrete category, which we by abuse of notation denote |D|.
In the other direction, every category C gives rise to a type |C| whose elements
are the objects of C.

Proposition 11. There is a function ϕ : IR(D)→ IR+(|D|) s.t.

JγKIR(D)
∼= Jϕ(γ)KIR+(|D|)

Proof. The only interesting case is the δ code. Since |D| is a discrete category,
also A→ |D| is discrete. Hence a mapping on objects (A→ |D|)→ IR(D) can
trivially be extended to a functor (A→ |D|)→ IR+(|D|). ut

This proposition shows that the theory of IR can be embedded in the theory of IR+.
In the next proposition we slightly sharpen this result. We use the functoriality
of the Fam construction (Remark 3) to show that forgetting about the extra
structure in IR+ simply gets us back to plain IR.

Proposition 12. Let |−| : CAT→ SET be the functor assigning to each category
the collection of its objects. There is a function ψ : IR+C→ IR |C| such that

Fam | − | ◦ JγKIR+C = Jψ(γ)KIR |C| ◦ Fam | − |

for all γ : IR+C. Furthermore, ψ ◦ ϕ = id. ut

6 Existence of Initial Algebras

We briefly revisit the initial algebra argument used by Dybjer and Setzer [8].
Inspecting their proof, we see that it indeed is possible to adapt it also for the

more general setting of positive inductive-recursive definitions by making the
appropriate adjustments.

Remember that we call a morphism (h, k) : (U, T)→ (U, T ′) in FamC a splitting
morphism if k = idT , i.e. T ′ ◦ h = T . We indicate by Fam |C| the subcategory
(subfibration) of FamC with the same objects, but with morphisms the splitting
ones only.

The proof of existence of initial algebras for IR functors as given by Dybjer and
Setzer [8] takes place in the category Fam |C|. The hard work of the proof is
split between two lemmas. First Dybjer and Setzer prove that an IR functor JγK
preserves κ-filtered colimits if κ is an inaccessible cardinal which suitably bounds
the size of the index sets in the image of the filtered diagram. Secondly they use
the assumption of the existence of a large cardinal, namely a Mahlo cardinal, to
prove that such a cardinal bound for the index sets can actually be found. The
exact definition of when a cardinal is a Mahlo cardinal will not be important for
the current presentation; see Dybjer and Setzer [8] for how this assumption is
used. The existence of an initial algebra then follows a standard argument: the
initial algebra of a κ-continuous functor can be constructed as the colimit of the
initial chain up to κ iterations (see e.g. Adámek et al. [4]).

Inspecting the proofs, we see that they crucially depend on morphisms being
splitting in several places. Luckily, the morphisms involved in the corresponding
proofs for IR+ actually are! As is well-known, a weaker condition than κ-continuity
is actually sufficient: it is enough that the functor in question preserve the specific
colimit of the initial κ-chain. We thus show that the initial chain of a IR+ functor
actually lives in Fam |C|, which will allow us to modify Dybjer and Setzer’s proof
accordingly.

Lemma 13. For every code γ : IR+ C the induced functor JγK : FamC→ FamC
preserves splitting morphisms, i.e. if (f, g) is splitting, then so is JγK(f, g).

Proof. By induction on the structure of the code. The interesting case is γ = δAF .
Let (h, id) : (X,P ◦ h)→ (Y, P) be a splitting morphism. We have

JδAF K(h, id) = [inh◦g ◦ JF (P ◦ h ◦ g)K(h, id) ◦ JF→(g∗(id))K(X,P)]g :A→X

= [inh◦g ◦ JF (P ◦ h ◦ g)K(h, id)]g :A→X

where JF (g∗id)K(X,P) = id since both g∗, F and J K are functors. By the induction
hypothesis, each JF (P ◦ h ◦ g)K(h, id) is splitting. Furthermore injections are
splitting in FamC. Since composition of splitting morphisms is still splitting and
the cotuple of splitting morphisms is also splitting in FamC we conclude that
JδA F K(h, id) is a splitting morphism. ut

Lemma 14. For each γ : IR+ C, the initial chain

0→ JγK(0)→ JγK2(0)→ . . .

consists of splitting morphisms only.

Proof. Recall that the connecting morphisms ωj,k : JγKj(0) → JγKk(0) are
uniquely determined as follows:

– ω0,1 = !JγK(0) is unique.

– ωj+1,k+1 is JγK(ωj,k) : JγK(JγKj(0))→ JγK(JγKk(0)).
– ωj,k is the colimit cocone for j a limit ordinal.

We prove the statement by induction on j. It is certainly true that !JγK(0) :
(0, !)→ JγK(0) is an identity at each component – there are none. Thus ω0,1 is a
splitting morphism. At successor stages, we can directly apply Lemma 13 and
the induction hypothesis. Finally, at limit stages, we use the fact that the colimit
lives in Fam |C| and hence coincides with the colimit in that category on splitting
morphisms, so that the colimit cocone is splitting. ut

Inspecting Dybjer and Setzer’s original proof, we see that it now goes through
also for IR+ if we insert appeals to Lemma 14 where necessary. To finish the proof,
we also need to ensure that FamC has κ-filtered colimits; this is automatically
true if C has all small connected colimits (compare Remark 3), since FamC then
is cocomplete. Note that discrete categories have all small connected colimits for
trivial reasons.

Theorem 15. Assume that a Mahlo cardinal exists in the meta-theory. If C has
connected colimits, then every functor JγK for γ : IR+ C has an initial algebra. ut

7 Conclusion

In this paper we have introduced the theory IR+ of positive inductive-recursive
definitions as a generalization of Dybjer and Setzer’s theory IR of inductive-
recursive definitions [8,9,10], different from the fibrational generalization explored
in Ghani et al. [15]: by modifying both syntax and semantics of IR we have been
able to broaden the semantics to all of FamC and not just Fam |C|. The theory of
IR+, with IR as a subtheory, paves the way to the analysis of more sophisticated
data types which allow not only for the simultaneous definition of an inductive
type X and of a recursive function f : X → D, but also takes the intrinsic
structure between objects in the target type D into account. This is the case for
example when D is a setoid, the category Set or Setop, a groupoid or, even more
generally, an arbitrary category C.

In future work we aim to explore the theory of IR+ from a fibrational perspective:
this will allow us to reconcile the theory of IR+ with the analysis of IR as given
in Ghani et al [15]. In particular this will amount to characterising the semantics
of δ codes as left Kan extensions. Another interesting direction of research is to
investigate to which extent the rich structure of the families construction Fam
will help shed light on the analysis of IR+ types: in particular to exploit the
monadic structure of Fam and then to investigate the relationship between the
theory of IR+ and the theory of familial 2-functors introduced by Weber [17].

References

1. Abbott, M.: Category of Containers. Ph.D. thesis, University of Leicester (2003)
2. Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for higher-

order and nested datatypes. Theoretical Computer Science 333(1-2), 3–66 (2005)
3. Aczel, P.: Frege structures and the notions of proposition, truth and set. In: Barwise,

J., Keisler, H.J., Kunen, K. (eds.) The Kleene Symposium, Studies in Logic and
the Foundations of Mathematics, vol. 101, pp. 31 – 59. Elsevier (1980)

4. Adámek, J., Milius, S., Moss, L.: Initial algebras and terminal coalgebras: a survey
(June 29 2010), draft

5. Blampied, P.: Structured Recursion for Non-uniform Data-types. Ph.D. thesis,
University of Nottingham (2000)

6. Carboni, A., Johnstone, P.: Connected limits, familial representability and Artin
glueing. Mathematical Structures in Computer Science 5(04), 441–459 (1995)

7. Dybjer, P.: A general formulation of simultaneous inductive-recursive definitions in
type theory. Journal of Symbolic Logic 65(2), 525–549 (2000)

8. Dybjer, P., Setzer, A.: A finite axiomatization of inductive-recursive definitions.
In: Typed lambda calculi and applications: 4th international conference, TLCA’99,
L’Aquila, Italy, April 7-9, 1999: proceedings. pp. 129–146. Springer Verlag (1999)

9. Dybjer, P., Setzer, A.: Induction–recursion and initial algebras. Annals of Pure and
Applied Logic 124(1-3), 1–47 (2003)

10. Dybjer, P., Setzer, A.: Indexed induction–recursion. Journal of logic and algebraic
programming 66(1), 1–49 (2006)

11. Ek, L., Holmström, O., Andjelkovic, S.: Formalizing Arne Andersson trees and
Left-leaning Red-Black trees in Agda. Bachelor thesis, Chalmers University of
Technology (2009)

12. Fiore, M., Plotkin, G., Turi, D.: Abstract syntax and variable binding. In: Proc.
Logic in Computer Science. pp. 193–202 (1999)

13. Ghani, N., Hamana, M., Uustalu, T., Vene, V.: Representing cyclic structures as
nested types (2006), presented at Trends in Functional Programming

14. Ghani, N., Hancock, P., Malatesta, L., McBride, C., Altenkirch, T.: Small induction
recursion. In: TLCA 2013 (2013)

15. Ghani, N., Malatesta, L., Nordvall Forsberg, F., Setzer, A.: Fibred data types. In:
LICS 2013 (2013)

16. Jacobs, B.: Categorical Logic and Type Theory, Studies in Logic and the Foundations
of Mathematics, vol. 141. North Holland, Elsevier (1999)

17. Mark, W.: Familial 2-functors and parametric right adjoints. Theory and Applica-
tions of Category Theory 18(22), 665–732 (2007)

18. Martin-Löf, P.: An intuitionistic theory of types (1972), published in Twenty-Five
Years of Constructive Type Theory

19. Martin-Löf, P.: Intuitionistic type theory. Bibliopolis Naples (1984)
20. McBride, C., McKinna, J.: The view from the left. Journal of Functional Program-

ming 14(1), 69–111 (2004)
21. Nordvall Forsberg, F., Setzer, A.: A finite axiomatisation of inductive-inductive

definitions. In: Berger, U., Hannes, D., Schuster, P., Seisenberger, M. (eds.) Logic,
Construction, Computation, Ontos mathematical logic, vol. 3, pp. 259 – 287. Ontos
Verlag (2012)

22. Ralf, H.: Functional pearl: Perfect trees and bit-reversal permutation. Journal of
Functional Programming 10(3), 305–317 (2000)

	Positive Inductive-Recursive Definitions
	Introduction
	Induction Recursion
	Positive Inductive-Recursive Definitions
	Syntax and Semantics of IR+ (C)

	Application: A Concrete Representation of Nested Types
	Comparison to Plain IR
	Existence of Initial Algebras
	Conclusion

