
Proof-relevant parametricity?

Neil Ghani, Fredrik Nordvall Forsberg, and Federico Orsanigo

University of Strathclyde, UK
{neil.ghani, fredrik.nordvall-forsberg, federico.orsanigo}@strath.ac.uk

Abstract. Parametricity is one of the foundational principles which
underpin our understanding of modern programming languages. Roughly
speaking, parametricity expresses the hidden invariants that programs
satisfy by formalising the intuition that programs map related inputs
to related outputs. Traditionally parametricity is formulated with proof-
irrelevant relations but programming in Type Theory requires an exten-
sion to proof-relevant relations. But then one might ask: can our proofs
that polymorphic functions are parametric be parametric themselves?
This paper shows how this can be done and, excitingly, our answer requires
a trip into the world of higher dimensional parametricity.

1 Introduction

According to Strachey [2000], a polymorphic program is parametric if it applies
the same uniform algorithm at all instantiations of its type parameters. Reynolds
[1983] proposed relational parametricity as a mathematical model of parametric
polymorphism. Phil Wadler, with his characteristic ability to turn deep math-
ematical insight into practical gains for programmers, showed how Reynolds’
relational parametricity has strong consequences [Wadler, 1989, 2007]: it implies
equivalences of different encodings of type constructors, abstraction properties
for datatypes, and famously, it allows properties of programs to be derived “for
free” purely from their types.

Within relational parametricity, types containing free type variables map not
only sets to sets, but also relations to relations. A relation R between sets A and
B is a subset R ⊆ A×B. We call these proof-irrelevant relations as, given a ∈ A
and b ∈ B, the only information R conveys is whether a is related to b and not,
for example, how a is related to b. However, the development of dependently
type programming languages, constructive logics and proof assistants means such
relations are insufficient in a number of settings. For example, it is often natural
to consider a relation R between sets A and B to be a function R : A×B → Set,
where we think of R(a, b) as the set of proofs that R relates a and b. Such
proof-relevant relations are needed if one wants to work in the pure Calculus of
Constructions [Coquand and Huet, 1988] without assuming additional axioms

? This work is partially supported by SICSA, and EPSRC grants EP/K023837/1 and
EP/M016951/1.

(in contrast, Atkey [2012] formalised (proof-irrelevant) relational parametricity in
Coq, an implementation of the Calculus of Constructions, by assuming the axiom
of Propositional Extensionality). This paper asks the fundamental question:

Does the relational model of parametric polymorphism extend from proof-
irrelevant relations to proof-relevant relations?

At first sight, one might hope for a straightforward answer. Many properties in the
proof-irrelevant world have clear analogues as proof-relevant constructions. Indeed,
as we shall see, this approach gives a satisfactory treatment of the function space.
However, universally quantified types pose a much more significant challenge; it
is insufficient to simply take the uniformity condition inherent within a proof-
irrelevant parametric polymorphic function and replace it with a function acting
on proofs; this causes the Identity Extension Lemma to fail. Instead, to prove this
lemma in a proof-relevant setting, we need to strengthen the uniformity condition
on parametric polymorphic functions by requiring it to itself be parametric.

Proof-relevant parametricity thus entails adding a second layer of parametricity
to ensure that the proofs that functions are parametric are themselves para-
metric. This takes us into the world of 2-dimensional parametricity where type
constructors now act upon sets, relations and 2-relations. But, there are actually
surprisingly many choices as to what a 2-relation is! Further, at higher dimensions,
there are a number of potential equality relations and it is not a priori clear which
of these need to be preserved and which do not. Relations are naturally organised
in a cubical or simplicial manner, and so this will not surprise those familiar with
simplicial and cubical methods, where there is an analogous choice of which face
maps and degeneracies to consider. For example, do connections [Brown et al.,
2011] have a role to play in proof-relevant parametricity? These questions are not
at all obvious — we went down many false routes before finding the right answer.

The paper is structured as follows: in Section 2, we introduce the preliminaries
we need, while Sections 3 and 4 introduce proof-relevant relations and 2-relations.
Section 5 constructs a 2-dimensional model of System F, and proves it correct by
establishing 2-dimensional analogues of the Identity Extension Lemma and the
Abstraction Theorem. We present a proof-of-concept application in Section 6,
where we generalise the usual proof that parametricity implies naturality to the
2-dimensional setting. Section 7 concludes, with plans for future work including
higher-dimensional logical relations, and the relationship with the cubical sets
model of HoTT.

2 Impredicative Type Theory and the Identity Type

In order to make proof-relevant relations precise, we work in the constructive
framework of impredicative Martin-Löf Type Theory [Coquand and Huet, 1988;
Martin-Löf, 1972]. Impredicativity allows us to quantify over all types of sort

Type in order to construct a new object of sort Type.1 Following Atkey [2012], we
will use impredicative quantification in the meta-theory to interpret impredicative
quantification in the object theory. This simplifies the presentation, and allows
us to focus on the proof-relevant aspects of the logical relations.

Apart from impredicativity, the type theory we employ is standard; we make use of
dependent function types (Πx : A)B(x) and dependent pair types (Σx : A)B(x)
with the usual introduction and elimination rules. We write A→ B for (Πx : A)B
and A × B for (Σx : A)B when B does not depend on x : A. Crucial for our
development will be Martin-Löf’s identity type, given by the following rules:

A : Type a, b : A

IdA(a, b) : Type
a : A

refl(a) : IdA(a, a)

C : (Πx, y : A)(IdA(x, y)→ Type) d : (Πx : A)C(x, x, refl(x))

J(C, d) : (Πx, y : A)(Πp : IdA(x, y))C(x, y, p)

In the language of the HoTT book [The Univalent Foundations Program, 2013],
the elimination rule J is called path induction. We stress that we are not assuming
Uniqueness of Identity Proofs, as that would in effect result in proof-irrelevance
once again. In this paper, we will however restrict attention to types where
identity proofs of identity proofs are unique, i.e. to types A where IdIdA(x,y)(p, q)
is trivial. Garner [2009] has investigated the semantics of Type Theory where all
types are of this form. For our purposes, it is enough to work with a subuniverse
of such types. To make this precise, define

isProp(A) := (Πx, y : A)IdA(x, y) Prop := (ΣX : Type)(isProp(X))

isSet(A) := (Πx, y : A)isProp(IdA(x, y)) Set := (ΣX : Type)(isSet(X))

is-1-Type(A) := (Πx, y : A)isSet(IdA(x, y)) 1-Type := (ΣX : Type)(is-1-Type(X))

Here Prop is the subuniverse of propositions, i.e. types with at most one inhabitant
up to identity, while Set is the subuniverse of sets, i.e. types whose identity types
in turn are propositional. Finally, we are interested in the subuniverse 1-Type of
1-types, i.e. types whose identity types are sets. Subuniverses of an impredicative
universe are also impredicative. Furthermore, all three of Prop, Set and 1-Type
are closed under Π- and Σ-types. The witness that a type is in a subuniverse
is itself a proposition, and so we will abuse notation and leave it implicit — if
there is a proof, it is unique up to identity.

We denote by a ≡A b the existence of a proof p : IdA(a, b). We often leave out the
subscript if it can be inferred from context. A function f : A→ B is said to be an
equivalence if it has a left and a right inverse, and if there exists an equivalence
A → B, we write A ∼= B. If P : A → Prop, then we write {x : A |P (x)}
for (Σx : A)P (x). Since P (x) is a proposition for each x : A, we have that

1 In Coq, this feature can be turned on by means of the command line option
-impredicative-set.

Id{x:A |P (x)}((a, p), (b, q)) ∼= IdA(a, b). For this reason, we will often leave the
proof p : P (a) implicit when talking about an element (a, p) of {x : A |P (x)}.
We also suggestively write a ∈ P for P (a). The identity type has a rich structure.
In order to introduce notation, we list some basic facts here, and refer to the
HoTT book [The Univalent Foundations Program, 2013] for more information.

Lemma 1 (Structure on IdA(a, b)).

(i) For any p : IdA(a, b) there is p−1 : IdA(b, a).

(ii) For any p : IdA(a, b) and q : IdA(b, c) there is p � q : IdA(a, c), and refl(a), −−1

and − �− satisfy the laws of a (higher) groupoid.

(iii) All functions f : A → B are functorial in IdA, i.e. there is a term ap(f) :
IdA(a, b)→ IdB(f(a), f(b)).

(iv) All type families respect IdA, i.e. there is a function

tr : (P : A→ Type)→ IdA(a, b)→ P (a)→ P (b) . ut

We frequently use the following characterisation of equality in Σ-types:

Lemma 2. Id(Σx:A)B(x)((x, y), (x′, y′)) ∼= (Σp : IdA(x, x′))IdB(x′)(tr(B, p, y), y′).

For function types, the corresponding statement is not provable, so we rely on
the following axiom:

Axiom 3 (Function extensionality). The function

happly : Id(Πx:A)B(x)(f, g)→ (Πx : A)IdB(x)(f(x), g(x))

defined using J in the obvious way is an equivalence. In particular, we have an
inverse

ext : (Πx : A)IdB(x)(f(x), g(x))→ Id(Πx:A)B(x)(f, g)

This axiom is justified by models of impredicative Type Theory in intuitionistic
set theory. It also follows from Voevodsky’s Univalence Axiom [Voevodsky, 2010],
which we do not assume in this paper. We will use function extensionality in
order to derive the Identity Extension Lemma for arrow types, as in e.g. Wadler
[2007].

3 Proof-relevant relations

We now define proof-relevant relations:

Definition 4. The collection of proof-relevant relations is denoted Rel and con-
sists of triples (A,B,R), where A,B : 1-Type and R : A×B → Set. The 1−type
of morphisms from (A,B,R) to (A′, B′, R′) is

(Σf : A→ A′)(Σg : B → B′)(Πx : A, y : B)R(a, b)→ R′(fa, gb)

In the rest of this paper we take relation to mean proof-relevant relation. The
above definition means morphisms between relations have a proof-relevant equality
and, thus, showing morphisms are equal involves constructing explicit proofs to
that effect. Indeed, the equality of morphisms is given by

Id((f, g, p), (f ′, g′, p′)) ∼= (Σφ : Id(f, f ′), ψ : Id(g, g′)) Id(tr(φ, ψ)p, p′)

However, since R : A×B → Set has codomain Set, while A and B are 1−types,
the complexity of R compared to A and B has decreased. This means relations
between proof-relevant relations are in fact proof-irrelevant (see Section 4).

Given a relation (A,B,R), we often denote A by R0 and B by R1, write R :
Rel(R0, R1), or R : R0 ↔ R1, and call R a relation between A and B. Similarly,
given a morphism (f, g, p), we denote f by p0, g by p1 and write p : (R0 →
R1)(p0, p1). If R : Rel(R0, R1) and P : Rel(P0, P1), then we have 1 : Rel(1,1),
P ×R : Rel(P0 ×R0, P1 ×R1) and R⇒ P : Rel(R0 → P0, R1 → P1) defined by

1(x, y) := 1

(R× P)((x, y), (x′, y′)) := R(x, x′)× P (y, y′)

(R⇒ P)(f, g) := (Πx : R0, y : R1)(R(x, y)→ P (fx, gy))

Interpreting abstraction and application requires the following functions:

Lemma 5. Let R : Rel(A,B), R′ : Rel(A′, B′), and R′′ : Rel(A′′, B′′). There
is an equivalance abs : (R × R′ → R′′) → (R → (R′ ⇒ R′′)) with inverse
app : (R→ (R′ ⇒ R′′))→ (R×R′ → R′′). ut

We will also make use of the equality relation Eq(A) for each 1-type A:

Definition 6. Equality Eq : 1-Type→ Rel is defined by Eq(A) = (A,A, IdA) on
objects and Eq(f) = (f, f, ap(f)) on morphisms.

Proposition 7. Eq is full and faithful in that (EqX → EqY) ∼= X → Y .

Proof. By function extensionality and contractability of singletons, we have

(EqX → EqY) = (Σf : X → Y)(Σg : X → Y)(Πxx′)IdX(x, x′)→ IdY (fx, gx′)
∼= (Σf : X → Y)(Σg : X → Y)IdX→Y (f, g)
∼= (Σf : X → Y)1 ∼= X → Y . ut

Similarly, the exponential of equality relations is an equality relation. Here, we
abuse notation and use the same symbol for equivalence of types and isomorphisms
of relations:

Proposition 8. For all X,Y : 1-Type, we have (EqX ⇒ EqY) ∼= Eq(X → Y).

Proof. By extensionality it is enough to show

((Πx, x′ : X)Id(x, x′)→ Id(fx, gx′)) ∼= (Πx : X)Id(fx, gx)

for every f, g : X → Y . Functions can easily be constructed in both directions
and proved inverse using extensionality and path induction. ut

4 Relations between relations

Intuitively, 2-relations should relate proofs of relatedness in proof-relevant re-
lations. Although conceptually simple, formalising 2-relations is non-trivial as
various choices arise. For instance, if R and R′ are proof-relevant relations, one
may consider 2-relations between them as being given by functions

Q : (Πa : R0, a
′ : R′0, b : R1, b

′ : R′1) (R(a, b)×R′(a′, b′))→ Prop

with the intuition of (p, p′) ∈ Q(a, a′, b, b′) being that Q relates the proof p to the
proof p′. However, the natural arrow type of such 2-relations does not preserve
equality. The problem is that, while a is related to b, and a′ is related to b′,
there is no relationship between a and a′ and b and b′. Thus, we were led to
the following definition which seems to originate with Grandis (see e.g. Grandis
[2009]):

Definition 9. A 2-relation consists of the following 1-types and proof-relevant
relations between them

Q00OO

Q0r

��

oo Qr0 // Q10OO

Q1r

��
Q01
oo
Qr1

// Q11

together with a predicate

Q : (Πa : Q00, b : Q10, c : Q01, d : Q11)

Qr0(a, b)×Q0r(a, c)×Qr1(c, d)×Q1r(b, d)→ Prop

A morphism of 2-relations consists of 4 functions between each corresponding
node, 4 maps of relations such that each is over the appropriate pair of morphisms
of 1-types, and a predicate stating that proofs related in one 2-relation are mapped
to proofs which are related in the other 2-relation.

Thus a 2-relation is a 9-tuple and, even worse, a morphism of 2-relations is a 27-
tuple! This combinatorial complexity is enough to scupper any noble mathematical
intentions. We therefore develop a more abstract treatment beginning with the
indices in a 2-relation. This extends the notion of reflexive graphs [Robinson
and Rosolini, 1994; O’Hearn and Tennent, 1995; Dunphy and Reddy, 2004] to a
second level of 2-relations; this notion, in turn, is just the first few levels of the
notion of a cubical set [Brown and Higgins, 1981].

Definition 10. Let I0 be the type with elements {00, 01, 10, 11} of indices for
1-types, and I1 the type with elements {0r, r0, 1r, r1} of indices for proof-relevant
relations. Define the source and target function @ : I1 × Bool→ I0 where w@i
replaces the occurrence of r in w by i. We write w@i as wi.

I0-types: Next we develop algebra for the types contained in 2-relations.

Definition 11. An I0-type is a function X : I0 → 1-Type. To increase legibility
we write Xw for Xw. The collection of maps between two I0-types is defined by

X → X ′ := (Πw : I0)Xw → X ′w

We define the following operations on I0-types:

1 := λw.1

X ×X ′ := λw.Xw ×X ′w
X ⇒ X ′ := λw.Xw → X ′w

If X is an I0-type, define its elements ElX = (Πw : I0)Xw. The natural extension
of this action to morphisms f : X → X ′ is denoted El f : ElX → ElX ′.

Note that elements deserve that name as ElX ∼= 1 → X. The construction of
elements preserves structure as the following lemma shows:

Lemma 12. Let X and X ′ be I0-types. Then

El 1 ∼= 1

El(X ×X ′) ∼= ElX × ElX ′

El(X ⇒ X ′) = (Πw : I0)Xw → X ′w

ut

Finally, we show how to interpret abstraction and application over I0-types:

Lemma 13. Let X,X ′ and X ′′ be I0-types. The function

abs = λw. λf. λx. λx′. f(x, x′) : (X ×X ′ → X ′′)→ (X → (X ′ ⇒ X ′′))

is an equivalence with inverse app = λw. λf. λy. f (π0y) (π1y). ut

I1-Relations: Next we develop algebra for the relations contained in 2-relations.

Definition 14. An I1-relation is a pair (X,R) of an I0-type X and a function
R : (Πw : I1)Rel(Xw0, Xw1). The collection of maps between two I1-relations is
defined by

(X,R)→ (X ′, R′) := (Σf : X → X ′)(Πw : I1)(Rw → R′w)(fw0, fw1)

We define the following operations on I1-relations:

1 := (1, λw.1)

(X,R)× (X ′, R′) := (X ×X ′, λw.Rw ×R′w)

(X,R)⇒ (X ′, R′) := (X ⇒ X ′, λw.Rw ⇒ R′w)

If (X,R) is an I1-relation, define its elements

El(X,R) = (Σx : ElX)(Πw : I1)Rw(xw0, xw1)

The natural extension of El to morphisms (f, g) : (X,R)→ (X ′, R′) is denoted
El(f, g) : El(X,R)→ El(X ′, R′).

Note that elements deserve that name as El(X,R) ∼= 1→ (X,R). The construc-
tion of elements preserves structure as the following lemma shows:

Lemma 15. Let (X,R) and (X ′, R′) be I1-relations. Then

El 1 ∼= 1

El((X,R)× (X ′, R′)) ∼= El(X,R)× El(X ′, R′)

El((X,R)⇒ (X ′, R′)) = (Σf : El(X ⇒ X ′))(Πw : I1)(Rw ⇒ R′w)(fw0, fw1)

ut

Finally, we show how to interpret abstraction and application over I0-types:

Lemma 16. Let (X,R), (X ′, R′) and (X ′′, R′′) be I1-relations. There is an equiv-
alence abs : ((X,R)×(X ′, R′)→ (X ′′, R′′))→ ((X,R)→ ((X ′, R′)⇒ (X ′′, R′′)))
with inverse

app : ((X,R)→ ((X ′, R′)⇒ (X ′′, R′′)))→ ((X,R)× (X ′, R′)→ (X ′′, R′′))

Proof. The proof is similar to the proof of Lemma 5, but rests crucially on the
fact that R⇒ P : Rel(R0 → P0, R1 → P1). ut

2-Relations: Finally, we develop the same algebra for 2-relations.

Definition 17. An 2-relation is a pair consisting of an I1-relation (X,R) and a
function Q : El(X,R)→ Prop. The collection of maps between two 2-relations is
defined by

((X,R), Q)→ ((X ′, R′), Q′) := (Σ(f, g) : (X,R)→ (X ′, R′))

(Π(x, p) : El(X,R))p ∈ Q(x)⇒ (El g p) ∈ Q′(El f x)

We define the following operations on 2-relations

1 = (1, λ .1)

((X,R), Q)× ((X ′, R)′, Q′) = ((X,R)× (X ′, R′),

λ(x, y)λ(p, q).p ∈ Q(x) ∧ q ∈ Q′(y))

((X,R), Q)⇒ ((X ′, R′), Q′) = ((X,R)⇒ (X ′, R′),

λ(f, g).(Π(x, p) : El(X,R))p ∈ Q(x)⇒ (El g p) ∈ Q′(El f x))

Lemma 18. Let ((X,R), Q), ((X ′, R′), Q′) and ((X ′′, R′′), Q′′) be 2-relations.
There is an equivalence

abs : (((X,R), Q)× ((X ′, R′), Q′)→ ((X ′′, R′′), Q′′)) ∼=
(((X,R), Q)→ (((X ′, R′), Q′)⇒ ((X ′′, R′′), Q′′)))

with inverse app.

Proof. Note that if X,X ′ and X ′′ are I0-types, and if f : X × X ′ → X ′′ and
absf : X → (X ′ ⇒ X ′′), then for any x : ElX,x′ : ElX ′, and w : I0

(Elf) (x, x′) w ≡ (El (absf) x w)(x′ w)

Similar results hold for app and for the analogous lemmas for I1-sets. This,
together with Lemma 16, extensionality and direct calculation gives the result.

ut

As in cubical and simplicial settings, there is more than one “degenerate” relation
in higher dimensional relations. For example, we can duplicate a relation vertically
or horizontally giving two functors Eq‖,Eq= : Rel→ 2Rel sending a relation R to
the 2-relation indexed, repectively, by

R0

Eq‖(R)

OO

R

��

ooEq(R0)// R0OO

R

��

R0

Eq=(R)

oo R //
OO

Eq(R0)

��

R1OO

Eq(R0)

��
R1
oo
Eq(R1)

// R1 R0
oo
R
// R1

where (p, q, p′, q′) ∈ Eq‖(R)(a, b, c, d) if and only if tr(p, p′)q ≡R(b,d) q
′, while

(p, q, p′, q′) ∈ Eq=(R)(a, b, c, d) if and only if tr(q, q′)p ≡R(c,d) p
′. Note that both

the compositions Eq‖ ◦ Eq and Eq= ◦ Eq define the same functor which we denote

Eq2. Another degeneracy, called a connection [Brown et al., 2011], is defined by
a functor C : Rel→ 2Rel which maps a relation R to the 2-relation indexed by

R0

CR

ooEq(R0)//
OO

Eq(R0)

��

R0OO

R

��
R0
oo
R
// R1

and with (p, q, p′, q′) ∈ C(R)(a, b, c, d) if and only if tr(q−1 � p)p′ ≡R(b,d) q
′ (there

is of course also a symmetric version which swaps the role of Eq(R0) and R, but
we will not make us of this in the current paper). Again C ◦ Eq gives Eq2.

Proposition 19. The functor Eq‖ is full and faithful.

Proof. Similar to the proof of Proposition 7. ut

Again, we can prove that exponentiation preserves all the degeneracies and the
connection:

Proposition 20. For all R,R′ : Rel, we have

(i) an equivalence Eq‖R⇒ Eq‖R
′ ∼= Eq‖(R→ R′)

(ii) an equivalence Eq=R⇒ Eq=R
′ ∼= Eq=(R→ R′)

(iii) an equivalence CR⇒ CR′ ∼= C(R→ R′). ut

5 Proof-relevant two-dimensional parametricity

We now have the structure needed to define a 2-dimensional, proof-relevant model
of System F. We recall the rules of System F in Fig. 1. Each type judgement
Γ ` T type, with |Γ | = n, will be interpreted in the semantics as

JT K0 : |1-Type|n → 1-Type

JT K1 : |Rel|n → Rel

JT K2 : |2Rel|n → 2Rel

by induction on type judgements with JT K1 over JT K0 × JT K0, and JT K2 over
JT K1 × JT K1 × JT K1 × JT K1. This is similar to our previous work on bifibrational
functorial models of (proof-irrelevant) parametricity [Ghani et al., 2015a,b], but
with an additional 2-relational level.

Type formation rules:

Γ ` X type
(X ∈ Γ)

Γ ` A type Γ ` B type

Γ ` A→ B type

Γ,X ` A type

Γ ` ∀X.A type

Term typing rules:

Γ ;∆ ` x : A
(x : A ∈ ∆)

Γ ;∆,x : A ` t : B

Γ ;∆ ` λx. t : A→ B

Γ ;∆ ` s : A→ B Γ ;∆ ` t : A

Γ ;∆ ` s t : B

Γ,X;∆ ` t : A

Γ ;∆ ` ΛX.t : ∀X.A (X /∈ FV (∆))
Γ ;∆ ` t : ∀X.A Γ ;∆ ` B type

Γ ;∆ ` t[B] : A[X 7→ B]

Judgemental equality:

Γ ;∆ ` (λx. t)u = t[x 7→ u] : B Γ ;∆ ` t = λx. tx : A→ B
(x : A /∈ ∆)

Γ ;∆ ` (ΛX.t)[B] = t[X 7→ B] : A[X 7→ B] Γ ;∆ ` t = ΛX.t[X] : ∀X.A
(X /∈ Γ)

Fig. 1: Typing rules for System F

5.1 Interpretation of types

The full interpretation can be found in Fig. 2. For type variables and arrow types,
we just use projections and exponentials at each level. Elements of J∀X.T K0Ā
consist of an ad-hoc polymorphic function f0, a proof f1 that f0 is suitably
uniform, and finally a (unique) proof (A0) that also the proof f1 is parametric.
Similarly, elements of (J∀X.T K1R̄)(f, g) are proofs φ that are suitably parametric
in relation to f and g, both with respect to equalities (conditions A1.1 and A1.2)
and connections (condition A1.3). We have not included uniformity also with
respect to the “symmetric” connection since it is not needed for our applications,
and we wish to keep the logical relation minimal.

Using Lemma 2 and function extensionality, we can characterise equality in the
interpretation of ∀-types in the following way (note that Id(J∀X.T K2Q̄)~f (~φ, ~ψ) is

trivial by assumption, since (J∀X.T K2Q̄)~f is a proposition):

Lemma 21. For all f, g : J∀X.T K0Ā,

IdJ∀X.T K0Ā(f, g) ∼= { τ : (ΠA : 1-Type)IdJT K0(Ā,A)(f0A, g0A) |
(∀R : Rel) (f1R, τR0, g1R, τR1) ∈

Eq=(JT K1(Eq(Ā), R))(f0R0, f0R1, g0R0, g0R1)}

This can be used to prove a generalised version of the Identity Extension Lemma:

JX0, . . . , Xn ` Xk typeKi~Y = Yk JS → T Ki~Y = JSKi~Y ⇒i JT Ki~Y

J∀X.T K0Ā = { f0 : (ΠA : 1-Type)JT K0(Ā, A),

f1 : (ΠR : Rel)JT K1(Eq(Ā), R)(f0R0, f0R1) |
(∀Q : 2Rel) (f1Qr0, f1Q0r, f1Qr1, f1Q1r) ∈

JT K2(Eq2(Ā), Q)(f0Q00, f0Q10, f0Q01, f0Q11)} (A0)

(J∀X.T K1R̄)((f0, f1), (g0, g1)) = {φ : (ΠR : Rel)JT K1(R̄, R)(f0R0, g0R1) |
(∀Q : 2Rel)(

(f1Qr0, φQ0r, g1Qr1, φQ1r) ∈
JT K2(Eq‖(R̄), Q)(f0Q00, f0Q10, g0Q01, g0Q11)

(A1.1)

∧ (φQr0, f1Q0r, φQr1, g1Q1r) ∈
JT K2(Eq=(R̄), Q)(f0Q00, f0Q10, g0Q01, g0Q11)

(A1.2)

∧ (f1Qr0, f1Q0r, φQr1, φQ1r) ∈
JT K2(CR̄,Q)(f0Q00, f0Q10, f0Q01, g0Q11)

)
}

(A1.3)

(φ0, φ1, φ2, φ3) ∈ (J∀X.T K2Q̄)(f, g, h, l) iff

(∀Q : 2Rel) (φ0Qr0, φ1Q0r, φ2Qr1, φ3Q1r) ∈
JT K2(Q̄,Q)(f0Q00, g0Q10, h0Q01, l0Q11)

Fig. 2: Interpretation of types

Theorem 22 (IEL). For every type judgement Γ ` T type, we have

(i) an equivalence ΘT,0 : JT K1 ◦ Eq ∼= Eq ◦ JT K0,

(ii) an equivalence ΘT,‖ : JT K2 ◦ Eq‖
∼= Eq‖ ◦ JT K1 over ΘT,0,

(iii) an equivalence ΘT,= : JT K2 ◦ Eq=
∼= Eq= ◦ JT K1 over ΘT,0, and

(iv) an equivalence ΘT,C : JT K2 ◦C ∼= C ◦ JT K1 over ΘT,0. ut

Proof. We prove (i) for ∀-types, since it is useful in order to understand the
logical relations in Fig. 2. We refer to the appendix for the rest of the proof.

We define maps

Θ∀X.T,0 : J∀X.T K1Eq(Ā)(f, g)→ Eq(J∀X.T K0Ā)(f, g)

Θ−1
∀X.T,0 : Eq(J∀X.T K0Ā)(f, g)→ J∀X.T K1Eq(Ā)(f, g)

for all f , g and show that they are inverses — this does not come for free,
as in the proof-irrelevant setting, but will be considerably easier since we are
considering 1-types only, and not arbitrary types. We first define Θ∀X.T,0(ρ) :=
ϕ(λ(A : 1-Type). ρEq(A)), where ϕ is part of the equivalence given by Lemma 21.
The condition from Lemma 21 is satisfied by (A1.1) together with the induction
hypothesis.

For Θ−1
∀X.T,0, we define Θ−1

∀X.T,0(τ) := λR : Rel. tr(f1Eq(R0), τR1)f1R. We need to
check that conditions (A1.1), (A1.2) and (A1.3) are satisfied — we verify (A1.1)
in detail here, (A1.2) and (A1.3) follow analogously. Let Q : 2Rel. By (A0), we
have

(f1Qr0, f1Q0r, f1Qr1, f1Q1r) ∈ JT K2(Eq2(Ā), Q)(f0Q00, f0Q10, f0Q01, f0Q11)

while we want to prove

(f1Qr0, tr(f1Eq(Q00), τQ01)f1Q0r, g1Qr1, tr(f1Eq(Q10), τQ11)f1Q1r)

∈ JT K2(Eq‖(Eq(Ā)), Q)(f0Q00, f0Q10, g0Q01, g0Q11) .

Since Eq‖(Eq(Ā)) ∼= Eq2(Ā), we only need to prove

p : (f0Q00, f0Q10, f0Q01, f0Q11) ≡ (f0Q00, f0Q10, g0Q01, g0Q11)

and

q : tr(p)(f1Qr0, f1Q0r, f1Qr1, f1Q1r) ≡
(f1Qr0, tr(f1Eq(Q00), τQ01)f1Q0r, g1Qr1, tr(f1Eq(Q10), τQ11)f1Q1r)

and transport along pair=(p, q). We use p = pair=(f1Eq(Q00), f1Eq(Q10), τQ01, τQ11)
and q given by conditions (A1.1), (A1.3), (A0) for f1 and the condition from
Lemma 21.

We now check that Θ∀X.T,0 ◦Θ−1
∀X.T,0 = id and Θ−1

∀X.T,0 ◦Θ∀X.T,0 = id. One way
round

Θ∀X.T,0(Θ−1
∀X.T,0(τ))(A) = tr(f1Eq(A), τA)f1Eq(A) ≡ (f1Eq(A))−1�f1Eq(A)�τA ≡ τA

by Lemma 1 as required. By definition we have Θ−1
∀X.T,0(Θ∀X.T,0(ρ))(R) =

tr(f1Eq(A), ρEq(B))f1R. Condition A1.3 implies that

(f1Eq(A), ρR, ρEq(B), f1R) ∈ JT K2(C(Eq(Ā)),Eq‖(R))(f0A, f0A, f0B, fB)

and since C(Eq(Ā)) ∼= Eq‖(Eq(Ā)), by the induction hypothesis (f1Eq(A), ρR,

ρEq(B), f1R) are related in Eq‖JT K2(Eq(Ā), R), i.e. tr(f1Eq(A), ρEq(B))f1R =
ρ(R) as required. ut

The proof critically uses of the uniformity condition (A1.3) for connections. In
the interpretation of ∀-types in Fig. 2, and in the proof of Theorem 22, we made

some seemingly arbitrary choices: we choose to only be uniform with respect to
one connection, and we used the given f1, not the given g1, in order to construct
the isomorphism Θ−1

∀X.T,0. The following lemma shows that these choices are
actually irrelevant:

Lemma 23. For every type judgement Γ,X ` T type and (f0, f1) ∈ J∀X.T K0
~A,

φ ∈ J∀X.T K1(Eq ~A)(f, g), we have:

(i) For every relation R, tr(f1EqR0, φEqR1)f1R = φR.

(ii) For every relation R,

tr(f1EqR0, φEqR1)f1R = tr((φEqR0)−1, (g1EqR1)−1)g1R.

(iii) For every 2-relation Q,

(φQr0, φQ0r, g1Qr1, g1Q1r) ∈ JT K2(C◦Eq ~A,Q)(f0Q00, g0Q10, g0Q01, g0Q11).

ut

Here, item (i) is a technical lemma, while item (ii) says that one can equally well
use g1 as f1 in the proof of Theorem 22. Finally item (iii) shows that in certain
cases, the interpretation of terms of ∀-type are uniform also with respect to the
other connection which is not explicitly mentioned in the logical relation for ∀.

5.2 Interpretation of terms

We next show how to interpret terms. A term Γ ;∆ ` t : T , with |Γ | = n, will be
given a “standard” interpretation

JtK0
~A : J∆K0

~A→ JT K0
~A ,

for every ~A : 1-Typen, a relational interpretation

(JtK0
~R0, JtK0

~R1, JtK1
~R) : J∆K1

~R→ JT K1
~R ,

for every ~R : Reln, and finally a 2-relational interpretation

((JtK0
~Q−, JtK1

~Q−), JtK2
~Q) : J∆K2

~Q→ JT K2
~Q

for every ~Q : 2Reln, where we have written e.g. JtK0
~Q− for the map of I0-types

with components (JtK0
~Q−)w = JtK0

~Qw : J∆K0
~Qw → JT K0

~Qw and similarly for

JtK1
~Q−. At each level, ∆ = x1 : T1, . . . , xm : Tm is interpreted as the product

Jx1 : T1, . . . , xm : TmKi = JT1Ki × . . .× JTmKi .

Jx0 : T0, . . . , xn : Tn ` xk : TkKi ~X := πk J∆,x : S ` t : T Ki = J∆ ` t : T Ki ◦ π0

J∆ ` λx. t : S → T K0 ~A(γ) = λs. J∆,x : S ` t : T K0 ~A(γ, s)

J∆ ` λx. t : S → T K1 ~R(γ) = λs0. λs1. λs. J∆,x : S ` t : T K1 ~R((γ0, s0), (γ1, s1), (γ, s))

J∆ ` λx. t : S → T K2 ~Q((x, p), γ) = λ((x, p), γ). J∆,x : S ` t : T K2 ~Q((x, x), (p, p))(γ, γ)

Jf tK0 ~A(γ) = JfK0 ~A(γ) (JtK0 ~A(γ))

Jf tK1 ~R(γ0, γ1, γ) = JfK1 ~R(γ0, γ1, γ, JtK0 ~R0(γ0), JtK0 ~R1(γ1), JtK1 ~R(γ0, γ1, γ))

Jf tK2 ~Q((x, p), γ) = JfK2 ~Q((x, p), γ, JtK0 ~Qi(x), JtK1 ~Qj(p), JtK2 ~Q((x, p), γ))

JΛX.tK0 ~A(γ) = (λA. J∆,X;∆ ` t : T K0(~A,A)γ, λR. JtK1(Eq(~A), R)Θ∆,0(refl(γ)))

JΛX.tK1 ~R(γ0, γ1, γ) = λR. (JtK1(~R,R))(γ0, γ1, γ)

J∆ ` ΛX.t : ∀X.T K2 ~Q((x, p), γ) = λQ. JtK2(~Q,Q)((x, p), γ)

J∆ ` t[S] : T [S 7→ X]K0 ~A(γ) = fst(JtK0 ~A(γ))(JSK0 ~A)

Jt[S]K1 ~R(γ0, γ1, γ) = tr(ΘT,0(snd(JtK0 ~R0γ0)Eq(JSK0 ~R0)))−1(JtK1 ~R(γ0, γ1, γ)(JSK1 ~R))

Jt[S]K2 ~Q((x, p), γ) = JtK2 ~Q((x, p), γ)(JSK2 ~Q)

Fig. 3: Interpretation of terms

The full interpretation is given in Fig. 3. Variables, term abstraction and term
application are again given by projections and the exponential structure at each
level. For type abstraction and type application, we use the same concepts at
the meta-level, but we also have to prove that the resulting term satisfies the
uniformity conditions (A0), (A1.1), (A1.2) and (A1.3). In addition, we have to
put in a twist for the relational interpretation in order to validate the β- and
η-rules.

Lemma 24. The interpretation in Fig. 3 is well-defined.

Proof. The interpretation of Γ ;∆ ` ΛX.t : ∀X.T is type-correct, since ∆ is
weakened with respect to X in Γ,X;∆ ` t : T . The uniformity conditions (A0),
(A1.1), (A1.2) and (A1.3) can all be proven using JtK2. ut

Theorem 25. The interpretation defined in Fig. 3 is sound, i.e. if Γ ;∆ ` s = t :
T , then there is pĀ : IdJT K0Ā(JsK0, JtK0) and qR̄ : IdJT K1R̄(tr(pR̄0

)(JsK1), JtK1). (We
automatically have tr(p, q)JsK2 ≡ JtK2 by proof-irrelevance of 2-relations.) ut

This model reveals hidden uniformity not only in the “standard” interpretation
of terms as functions, but also in the canonical proofs of this uniformity via

the Reynolds relational interpretation of terms. In more detail: consider a term
Γ ;∆ ` t : T with |Γ | = n. By construction, our model shows that if ~R : Reln, a :

J∆K0
~R0, b : J∆K0

~R1 and p : J∆K1
~R(a, b), then JtK1

~R p : JT K1
~R(JtK0

~R0 a, JtK0
~R1 b),

i.e. JtK1
~R p is a proof that JtK0

~R0 a and JtK0
~R1 b are related at JT K1

~R. This
is a proof-relevant version of Reynolds’ Abstraction Theorem. Furthermore, if
~Q : 2Reln, (a, b, c, d) : J∆K0

~Q00× J∆K0
~Q10× J∆K0

~Q01× J∆K0
~Q11 and (p, q, r, s) ∈

J∆K2
~Q(a, b, c, d), then

(JtK1
~Qr0 p, JtK1

~Q0r q, JtK1
~Qr1 r, JtK1

~Q1r s) ∈

JT K2
~Q(JtK0

~Q00 a, JtK0
~Q10 b, JtK0

~Q10 c, JtK0
~Q11 d)

This is the Abstraction Theorem “one level up” for the proofs JtK1, which we will
put to use in the next section.

6 Theorems about Proofs for Free

In Phil Wadler’s famous ‘Theorems for free!’ [Wadler, 1989], the fact that para-
metric transformations are always natural in the categorical sense is shown to
have many useful and fascinating consequences. Among other things, it is shown
that

JAK ∼= J∀X.(A→ X)→ XK

for all types A — the categorically inclined reader will recognise this as an
instance of the Yoneda Lemma (see e.g. Mac Lane [1998]) for the identity functor,
if only we dared to consider the right hand side of the equation to consist
of natural transformations only. And indeed, as Wadler shows (and Reynolds
already knew [1983]), all System F terms JtK : J∀X.(A→ X)→ XK are natural by
parametricity. Hence, in proof-irrelevant parametric models of System F, indeed
JAK ∼= J∀X.(A→ X)→ XK.

In a more expressive theory such as (impredicative) Martin-Löf Type Theory with
proof-irrelevant identity types and function extensionality, we can go further even
without a relational interpretation, as pointed out by Steve Awodey (personal
communication). Taking inspiration from the Yoneda Lemma once again, we can
show

A ∼= (Σt : (ΠX : Set)(A→ X)→ X) isNat(t) (1)

where

isNat(t) := (ΠX,Y : Set)(Πf : X → Y)Id(A→X)→Y (f ◦ tX , tY ◦ (f ◦))

expresses that t is a natural transformation (note that we need the identity type
in order to state this). If we start with the interpretation of a System F term
in a proof-irrelevant model of parametricity, we can automatically derive this
naturality proof using Wadler’s argument.

The above isomorphism (1) relied on A being a set, i.e. that A has no non-trivial
higher structure. If we instead consider A : 1-Type, the isomorphism (1) fails;
instead we have

A ∼= (Σt : (ΠX : Set)(A→ X)→ X)(Σp : isNat(t)) isCoh(p) (2)

where

isCoh(p) := (ΠX,Y, Z : 1-Type)(Πf : X → Y)(Πg : Y → Z)

(pX Z (g ◦ f)) ≡ (p Y Z g) ? (pX Y f)

expresses that the proof p is suitably coherent. Here (p Y Z g) ? (pX Y f) is the
operation that pastes the two proofs pX Y f and p Y Z g of diagrams commuting
into a proof that the composite diagram commutes. Proof-irrelevant parametricity
can not ensure this coherence condition, but as we will see, an extension of the
usual naturality argument to proof-relevant parametricity will guarantee this
extra uniformity of the proof as well.

6.1 Graph relations and graph 2-relations

Relations representing graphs of functions are key to many applications of
parametricity.

Definition 26. Let f : A→ B in 1-Type. We define the graph 〈f〉 of f as 〈f〉 :=
(A,B, λa. λb. IdB(fa, b)) : Rel. This extends to an action on commuting squares:
if g : A′ → B′, α : A→ A′, β : B → B′ and p : (Πx : A) IdB′(g(α(a)), β(f(a))),
then we define 〈α, β〉 = (α, β, λa. λb. λ(r : fa ≡ b). p(a) � ap(β)(r)) : 〈f〉 → 〈g〉.

Abstractly, we see that 〈f〉 is obtained from Eq(B) by “reindexing” along (f, id)
and there is a morphism 〈f, id〉 : 〈f〉 → Eq(B); in particular, we recover Eq(B)
as 〈idB〉. Just like Eq is full and faithful, so is 〈−〉 : 1-Type→ → Rel:

Lemma 27. For all f : A→ B, g : A′ → B′,

(〈f〉 ⇒ 〈g〉) ∼= (Σα : A→ A′)(Σβ : B → B′)IdA→B′(g ◦ α, β ◦ f) .

ut

The main tool for deriving consequences of parametricity is the Graph Lemma,
which relates the graph of the action of a functor on a morphism with its relational
action on the graph of the morphism.

Theorem 28. Let F0 : 1-Type → 1-Type and F1 : Rel → Rel over F0 be func-
torial. If F1(Eq(A)) ∼= Eq(F0A) for all A, then for any f : A → B, there are
morphisms (id, id, φF,f) : 〈F0f〉 → F1〈f〉 and (id, id, ψF,f) : F1〈f〉 → 〈F0f〉. ut

Note that in our proof-relevant setting, this theorem does not construct an
equivalence 〈F0f〉 ∼= F1〈f〉. Instead, we only have a logical equivalence, i.e. maps
in both directions, and that seems to be enough for all known consequences of
parametricity. (In a proof-irrelevant setting, the constructed logical equivalence
would automatically be an equivalence.)

Next, we consider also graph 2-relations. Since we have multiple “equality 2-
relations”, one could expect also multiple graph 2-relations, but for the application
we have in mind, one suffices. Given functions f , g, l and h, we write �(f, g, l, h)
for the 1-type of proofs that the square

A
f //

h
��

B

g

��
C

l
// D

commutes, i.e. �(f, g, l, h) = (Πx : A)IdD(g(fx), l(hx)). We define the 1-type of
commuting squares by

(1-Type→)→ := (Σf : A→ B)(Σg : B → D)(Σl : C → D)(Σh : A→ C)�(f, g, l, h)

A morphism (f, g, l, h, p)→ (f ′, g′, l′, h′, p′) in (1-Type→)→ consists of four mor-
phisms α : A → A′, β : B → B′, γ : C → C ′ and δ : D → D′, and four proofs
q : �(α, h′, γ, h), q′ : �(β, f ′, δ, g), r : �(γ, l′, δ, l) and r′ : �(α, f ′, β, f) such that
they form a “commuting cube”

B
β //

g

��

B′

g′

��

A

f
??

α
//

h

��

A′

f ′
??

h′

��

D
δ

// D′

C
γ

//

l
??

C ′
l′

??

i.e. such that p ? q ? r ≡ p′ ? q′ ? r′, where p ? q ? r and p′ ? q′ ? r′ are pastings
of the squares that proves that both ways from one corner of the cube to the
opposite one commutes. The 2-graph 〈 〉2 : (1-Type→)→ → 2Rel is defined by

〈f, g, h, l, p〉2 := (〈f〉, 〈g〉, 〈h〉, 〈l〉, λ(a, b, c, d). λ(q, r, s, t). w(a)�ap(g)p�q ≡ ap(l)s�r)

It also has an action on morphisms, which we omit here. The 2-relation says
that the two ways to prove h(l(a)) = d using p, q, r, s, t are in fact equal.
Again, more abstractly, this is a “reindexing” of Eq‖(〈g〉) along the morphism

(〈f, l〉, 〈f, id〉, id〈g〉), 〈l, id〉) : (〈h〉, 〈f〉, 〈g〉, 〈l〉)→ (〈g〉,Eq(B), 〈g〉,Eq(D)) in Rel4.

Lemma 29. 〈−〉2 is full and faithful in the sense that

(〈f, g, h, l, p〉2 →2Rel 〈f ′, g′, h′, l′, p′〉2) ∼= (f, g, h, l, p)→(1-Type→)→ (f ′, g′, h′, l′, p′)

ut

This lemma can be used to prove a 2-relational version of the Graph Lemma:

Theorem 30 (2-relational Graph Lemma). Let F2 : 2Rel → 2Rel be func-
torial, and over (F0, F1) where F0 and F1 are as in Theorem 28. If F2(EqR) ∼=
Eq(F1R) for all R, then for any (f, g, h, l, p) in (1-Type→)→, there are morphisms
φ2 : 〈F0f, F0g, F0h, F0l, ap(F0)p〉2 → F2〈f, g, h, l, p〉2 and ψ2 : F2〈f, g, h, l, p〉2 →
〈F0f, F0g, F0h, F0l, ap(F0)p〉 in 2Rel over (φ, φ) and (ψ,ψ) from Theorem 28. ut

6.2 Coherent proofs of naturality

Let us now apply the tools we have developed to the question of the coherence
of the naturality proofs from parametricity. We first recall the standard theorem
that holds also with proof-irrelevant parametricity:

Theorem 31 (Parametric terms are natural). Let F (X) and G(X) be func-
torial type expressions in the free type variable X in some type context Γ . Every
term Γ ;− ` t : ∀X.F (X)→ G(X) gives rise to a natural transformation JF K0 →
JGK0, i.e. if f : A→ B then there is nat(f) : Id(JGK0(f)◦JtK0A, JtK0B ◦JF K0(f)).

Proof. We construct nat(f) using the relational interpretation of t: By construc-
tion, JtK1 〈f〉 : JF K1(〈f〉)→ JGK1(〈f〉), hence using Theorem 28,

ψG,f ◦ JtK1 〈f〉 ◦ φF,f : (Πxy) 〈JF K0f〉(x, y)→ 〈JGK0f〉(JtK0Ax, JtK0B y)

and since refl : 〈JF K0f〉(a, (JF K0f)a) for each a : JF K0A, we can define nat(f) :=
ext(λa. (ψG,f ◦ JtK1 〈f〉 ◦ φF,f) a ((JF K0f)a) refl). ut

In order for (JtK0, nat) to lie in the image of the isomorphism (2), we also need the
naturality proofs to be coherent. But thanks to the 2-relational interpretation,
we can show that they are:

Theorem 32 (Naturality proofs are coherent). Let F , G and t be as in
Theorem 31. The proof nat : isNat(JtK0) is coherent, i.e. for all f : A → B and
g : B → C, there is a proof coh(f, g) : Id(nat(g ◦ f), nat(g) ? nat(f)).

Proof. We construct coh(f, g) using the 2-relational interpretation of t. By
construction, JtK2〈f, g, g ◦ f, id, refl〉2 : JF K2〈f, g, g ◦ f, id, refl〉2 → JGK2〈f, g, g ◦
f, id, refl〉2, hence using Theorem 30,

φ2 ◦ JtK2〈f, g, g ◦ f, id, refl〉2 ◦ ψ2 :

(Π(x̄, r̄))
(
r̄ ∈ 〈F0f, F0g, F0(g ◦ f), id, ap(F0)p〉2x̄

→ (JtK1r̄) ∈ 〈G0f,G0g,G0(g ◦ f), id, ap(G0)p〉2(JtK0x̄)
)

We define

coh(f, g) := ext(λa. (φ2◦JtK2〈f, g, g◦f, id, refl〉2◦ψ2) (a, (F0f)a, F0(g◦f)a, a) ~refl)

— this works, since φ2 and ψ2 are over (φ, φ) and (ψ,ψ) respectively, since nat(h)
is defined to be (φ ◦ JtK1 ◦ ψ)refl, and since the 2-relation 〈G0f,G0g,G0(g ◦
f), id, ap(G0)p〉2 exactly says that pasting the two diagrams produces the third
in this case. ut

7 Conclusions and future work

In this paper, we tackled the concrete problem of transporting Reynolds’ theory
of relational parametricity to a proof-relevant setting. This is non-trivial as
one must modify Reynolds’ uniformity predicate on polymorphic functions so
that it itself becomes parametric. Implementing this intuition has significant
mathematical ramifications: an extra layer of 2-dimensional relations is needed
to formalise the idea of two proofs being related to each other. Further, there are
a variety of choices to be made as to what face maps and degeneracies to use
between proof-relevant relations and 2-relations. Having made these choices, we
showed that the key theorems of parametricity, namely the identity extension
lemma and the fundamental theorem of logical relations hold. Finally, we explored
how a standard consequence of relational parametricty — namely the fact that
parametricity implies naturality — also holds in the proof-relevant setting. This
work complements the more proof-theoretic work on internal parametricity in
proof-relevant frameworks [Bernardy et al., 2015, 2012; Polonsky, 2015]. Relevant
is also the work on parametricity for dependent types in general [Atkey et al.,
2014; Krishnaswami and Dreyer, 2013], assuming proof-irrelevance.

In terms of future work, we are extending the results of this paper to arbitrary
dimensions. We have a candidate definition of higher-dimensional relations, the
requisite face maps and degeneracies and we have proven the Identity Extension
Lemma. What remains to do is to fully investigate the consequences. For instance,
what form of higher dimensional initial algebra theorem can be proved with higher
dimensional parametricity? More generally, we need to compare the methods,
structures and results of higher dimensional parametricity with (where possible)
Homotopy Type Theory and in particular its cubical sets model [Bezem et al.,
2014], which shares many striking similarities. Finally, once the theoretical frame-
work is settled, we will want to implement it and then use that implementation
in formal proof.

Acknowledgements. We thank Bob Atkey, Peter Hancock and the anonymous
reviewers for helpful discussions and comments.

References

Atkey, R.: Relational parametricity for higher kinds. In: Cégielski, P., Durand, A.
(eds.) CSL 2012. LIPIcs, vol. 16, pp. 46–61. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik (2012)

Atkey, R., Ghani, N., Johann, P.: A relationally parametric model of dependent
type theory. In: POPL. pp. 503–515. ACM (2014)

Bernardy, J.P., Coquand, T., Moulin, G.: A presheaf model of parametric type
theory. In: Ghica, D.R. (ed.) MFPS. pp. 17–33. ENTCS, Elsevier (2015)

Bernardy, J.P., Jansson, P., Paterson, R.: Proofs for free. Journal of Functional
Programming 22, 107–152 (2012)

Bezem, M., Coquand, T., Huber, S.: A model of type theory in cubical sets.
In: Types for Proofs and Programs (TYPES 2013). Leibniz International
Proceedings in Informatics, vol. 26, pp. 107–128. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik (2014)

Brown, R., Higgins, P.J.: On the algebra of cubes. Journal of Pure and Applied
Algebra 21(3), 233 – 260 (1981)

Brown, R., Higgins, P.J., Sivera, R.: Nonabelian Algebraic Topology: Filtered
spaces, crossed complexes, cubical homotopy groupoids, EMS Tracts in Mathe-
matics, vol. 15. European Mathematical Society Publishing House (2011)

Coquand, T., Huet, G.: The Calculus of Constructions. Information and Compu-
tation 76, 95–120 (1988)

Dunphy, B., Reddy, U.: Parametric limits. In: LICS. pp. 242–251 (2004)

Garner, R.: Two-dimensional models of type theory. Mathematical Structures in
Computer Science 19(04), 687–736 (2009)

Ghani, N., Johann, P., Nordvall Forsberg, F., Orsanigo, F., Revell, T.: Bifibra-
tional functorial semantics of parametric polymorphism. In: Ghica, D.R. (ed.)
MFPS. pp. 67–83. ENTCS, Elsevier (2015a)

Ghani, N., Nordvall Forsberg, F., Orsanigo, F.: Parametric polymorphism —
universally. In: de Paiva, V., de Queiroz, R., Moss, L.S., Leivant, D., de Oliveira,
A.G. (eds.) WoLLIC. LNCS, vol. 9160, pp. 81–92. Springer (2015b)

Grandis, M.: The role of symmetries in cubical sets and cubical categories (on
weak cubical categories, I). Cah. Topol. Gom. Diff. Catg. 50(2), 102–143 (2009)

Krishnaswami, N.R., Dreyer, D.: Internalizing relational parametricity in the
extensional calculus of constructions. In: CSL. pp. 432–451 (2013)

Mac Lane, S.: Categories for the working mathematician, vol. 5. Springer (1998)

Martin-Löf, P.: An intuitionistic theory of types (1972), published in Twenty-Five
Years of Constructive Type Theory

O’Hearn, P.W., Tennent, R.D.: Parametricity and local variables. Journal of the
ACM 42(3), 658–709 (1995)

Polonsky, A.: Extensionality of lambda-*. In: Herbelin, H., Letouzey, P.,
Sozeau, M. (eds.) 20th International Conference on Types for Proofs and
Programs (TYPES 2014). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 39, pp. 221–250. Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany (2015)

Reynolds, J.: Types, abstraction and parametric polymorphism. In: Mason,
R.E.A. (ed.) Information Processing 83. pp. 513–523 (1983)

Robinson, E., Rosolini, G.: Reflexive graphs and parametric polymorphism. In:
LICS. pp. 364–371 (1994)

Strachey, C.: Fundamental concepts in programming languages. Higher Order
Symbolic Computation 13(1-2), 11–49 (2000)

The Univalent Foundations Program: Homotopy Type Theory: Univalent Foun-
dations of Mathematics. http://homotopytypetheory.org/book (2013)

Voevodsky, V.: The equivalence axiom and univalent models of type theory. Talk
at CMU on February 4, 2010 (2010), http://arxiv.org/abs/1402.5556

Wadler, P.: Theorems for free! In: FPCA. pp. 347–359 (1989)
Wadler, P.: The Girard-Reynolds isomorphism (second edition). Theoretical

Computer Science 375(1-3), 201–226 (2007)

A Proofs from Section 5

Proof (of Theorem 22). The proof is done by induction on type judgements. For
type variables, all statements are trivial. For arrow types, this is Propositions 8
and 20.

It remains to prove (ii), (iii) and (iv) for ∀-types. In this case we only need
to produce maps in both directions — they will automatically compose to the
identity by proof-irrelevance of 2-relations. The structure of the proof is the same
for all of the three points.

For (ii) consider (τ0, ρ0, τ1, ρ1) ∈ Eq‖(J∀X.T K1R̄)(f, g, h, l). We want to show that

(Ψ(τ0), ρ0, Ψ(τ1), ρ1) ∈ J∀X.T K2Eq‖(R̄)(f, g, h, l), i.e. that for every 2-relation Q,

(Ψ(τ0)Qr0, ρ0Q0r, Ψ(τ1)Qr1, ρ1Q1r) ∈ JT K2(Eq‖(R̄), Q)(f0Q00, g0Q10, h0Q01, l0Q11).

By condition A1.1, we have

(f1Qr0, ρ0Q1r, f1Qr1, ρ0Q0r) ∈ JT K2(Eq‖(R̄), Q)(f0Q00, f0Q10, h0Q01, h0Q11)

and using the equalities (f1EqQ00, τ0EqQ10, h1EqQ01, τ1EqQ11), we can show

(f0Q00, g0Q10, h0Q01, l0Q11, Ψ(τ0)Qr0, ρ0Q0r, Ψ(τ1)Qr1, ρ1Q1r)

≡ (f0Q00, f0Q10, h0Q01, h0Q11, f1Qr0, ρ0Q1r, f1Qr1, ρ0Q0r)

We now transport across this equality to finish the argument.

Finally, in the other direction, if (ρ0, ρ1, ρ2, ρ3) ∈ J∀X.T K2Eq‖(R̄)(f, g, h, l), then

(Θ(ρ0), ρ1, Θ(ρ2), ρ3) ∈ Eq‖(J∀X.T K1R̄)(f, g, h, l) by straightforward calculation
and the definition of J∀X.T K2.

The case (iii) is just the same as the previous case, the only difference is that
we now transport starting from condition (A1.2) and adjust the equalities along
which we transport.

http://homotopytypetheory.org/book
http://arxiv.org/abs/1402.5556

The last case (iv) is more complicated. Consider (τ0, τ1, ρ0, ρ1) ∈ C(J∀X.T K1R̄)(f, g, h, l).
We want to show that (Ψ(τ0), Ψ(τ1), ρ0, ρ1) ∈ J∀X.T K2C(R̄)(f, g, h, l), i.e. that
for every 2-relation Q,

(Ψ(τ0)Qr0, Ψ(τ1)Q0r, ρ0Qr1, ρ1Q1r) ∈ JT K2(C(R̄), Q)(f0Q00, g0Q10, h0Q01, l0Q11) .

By condition A1.3, we have

(h1Qr0, h1Q1r, ρ0Qr1, ρ0Q0r) ∈ JT K2(CR̄,Q)(h0Q00, h0Q10, h0Q01, l0Q11)

and using the equalities

((τ1Q00)−1) � f1EqQ00, (τ1EqQ10)−1 � τ0Q10, (h1EqQ01)−1 � h1EqQ01, refl),

we can show

(f0Q00, g0Q10, h0Q01, l0Q11, Ψ(τ0)Qr0, Ψ(τ1)Q0r, ρ0Qr1, ρ1Q1r)

≡ (h0Q00, h0Q10, h0Q01, l0Q11, h1Qr0, h1Q1r, ρ0Qr1, ρ0Q0r)

We can now transport across this equality to finish the argument. This re-
quires the use of Lemmas 23 (i) and (ii), and the fact that (τ0, τ1, ρ0, ρ1) ∈
C(J∀X.T K1R̄)(f, g, h, l).

Finally, In the other direction, if (ρ0, ρ1, ρ2, ρ3) ∈ J∀X.T K2C(R̄)(f, g, h, l), then
(Θ(ρ0), Θ(ρ1), ρ2, ρ3) ∈ C(J∀X.T K1R̄)(f, g, h, l) by straightforward calculation
and the definition of J∀X.T K2. ut

Proof (of Lemma 23).

(i) Since

(f1R, f1EqR0, f1R, f1EqR1) ∈ JT K2(C◦Eq(~A),Eq=(R))(f0R0, f0R1, g0R0, g0R1)

and JT K2(C◦Eq(~A),Eq=(R)) = JT K2(Eq=◦Eq(~A),Eq=(R)) ∼= Eq=(JT K1(Eq ~A,R)),
by Theorem 22(iii), the thesis follows.

(ii) By assumption,

(f1R,φEqR0, g1R,φEqR1) ∈ JT K2(Eq=Eq ~A,Eq=R)(f0R0, f1R1, g0R0, g0R1).

By Theorem 22(iii), JT K2(Eq=Eq ~A,Eq=R) ∼= Eq=(JT K1(Eq ~A,R)), hence we
have tr((φEqR0)−1, (g1EqR1)−1)g1R = tr(f1EqR0, φEqR1)f1R. If we now
transport (f1R,φEqR0, g1R,φEqR1) along the equality proof ((f1EqR0)−1,
(f1EqR1)−1, (φEqR0)−1, (g0EqR1)−1), the result follows.

(iii) By assumption,

(g1Qr0, g1Q0r, g1Qr1, g1Q1r) ∈ JT K2(Eq2
~A,Q)(g0Q00, g0Q10, g0Q01, g0Q11)

We can transport (g1Qr0, g1Q0r, g1Qr1, g1Q1r) along the equality ((φEqQ00)−1,
(g1EqQ10)−1, (g1EqQ01)−1, (g1EqQ11)−1). By (i) and (ii), condition (A0), and

JT K2(Eq2
~A,Q) = JT K2(C ◦ Eq ~A,Q), the thesis follows. ut

Proof (of Theorem 25). We need to check that the β- and η-rules for both
term and type abstraction are respected. For term abstraction, this follows from
Lemmas 13 and 16.

We next consider the η-rule for type abstraction. Let Γ ;∆ ` t : ∀X.T be given. Let
JtK0

~Aγ = (f0, f1). Showing JΛX.t[X]K0 ≡ JtK0 means giving p0 : Id(λA.f0A, f0)
and p1 : Id(λR.(tr(p0

�(snd((JtK0Āγ)Eq(R0))))−1(JtK1Eq(Ā)Θ∆,0(refl(γ))R)), snd(JtK0Āγ)).
For p0, we choose p0 = refl. Note that

(JtK1Eq(Ā)Θ∆,0(refl(γ))R)) = Θ∆,0(refl(JtK0
~Aγ))R =

tr(f1Eq(R0), refl)f1R

under the equivalence with respect to τ = refl, and

tr(refl � (snd((JtK0Āγ)Eq(R0))))−1 = tr(f1Eq(R0), refl)−1.

In this way we can conclude

tr(f1Eq(R0), refl)−1(Θ∆,0(refl(JtK0
~Aγ))R) = tr(f1Eq(R0), refl)−1tr(f1Eq(R0), refl)f1R

= f1R.

Similarly, things are exactly lined up to make tr(pair=(p0, p1))(JΛX.t[X]K1) ≡ JtK1

trivial.

For the β-rule, consider Γ,X ` t : T . We can use pĀ = (JtK1Eq(~A, JSK0
~A)Θ∆,0(refl(γ)))−1

to prove J(ΛX.t)[S]K0Āγ ≡ Jt[X 7→ S]K0Āγ. This makes tr(pR̄0
)(J(ΛX.t)[S]K1)R̄γ̄ ≡

Jt[X 7→ S]K1R̄γ̄ trivial, again using Lemma 1. ut

	Proof-relevant parametricity
	Introduction
	Impredicative Type Theory and the Identity Type
	Proof-relevant relations
	Relations between relations
	Proof-relevant two-dimensional parametricity
	Interpretation of types
	Interpretation of terms

	Theorems about Proofs for Free
	Graph relations and graph 2-relations
	Coherent proofs of naturality

	Conclusions and future work
	Proofs from Section 5

