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In the 1980s, John Reynolds postulated that a parametrically polymorphic function is an

ad-hoc polymorphic function satisfying a uniformity principle. This allowed him to prove

that his set-theoretic semantics has a relational lifting which satisfies the Identity

Extension Lemma and the Abstraction Theorem. However, his definition (and subsequent

variants) have only been given for specific models. In contrast, we give a

model-independent axiomatic treatment by characterising Reynolds’ definition via a

universal property, and show that the above results follow from this universal property in

the axiomatic setting.

1. Introduction

A polymorphic function is parametric if its behavior is uniform across all of its type

instantiations [Strachey, 2000]. Reynolds [1983] made this mathematically precise by

formulating the notion of relational parametricity, and gave a set-theoretic model, where

polymorphic programs are required to preserve all relations between instantiated types.

Relational parametricity has proven to be one of the key techniques for formally estab-

lishing properties of software systems, such as representation independence [Ahmed et al.,

2009, Dreyer et al., 2012], equivalences between programs [Hur and Dreyer, 2011], or

deriving useful theorems about programs from their type alone [Wadler, 1989].

In Reynolds’ original model of parametricity, every type constructor T of System F

with n free type variables is represented not just by a functor JT K0 : |Set|n → Set, but

also by a functor JT K1 : |Rel|n → Rel, where the category Rel has as objects relations and

as morphisms functions which preserve relatedness. Notice how both of these functors

have as domain discrete categories; this ensures that (i) contravariant type expressions

can be interpreted functorially; and (ii) that the functorial interpretation of function

types can be defined pointwise. The interpretation is given by induction on the structure

of the type T . When T is a function type, say T = U → V , we have

JU → V K0
~A = JUK0

~A→ JV K0
~A

(f, g) ∈ JU → V K1
~R iff (a, b) ∈ JUK1

~R ⇒ (fa, gb) ∈ JV K1
~R

(1)

Not only are the above definitions empirically natural, but they are also supported by

universal properties. Indeed, JU → V K0 and JU → V K1 are in fact exponential objects in



N. Ghani, F. Nordvall Forsberg and F. Orsanigo 2

their respective functor categories. The situation is less clear for ∀-types. If we denote

the equality relation on the set X by EqX, and lift that notation to tuples of types, then

Reynolds interpretation of ∀-types is as follows:

J∀X.T K0
~A = {f :

∏
X:Set

JT K0( ~A,X) | ∀R ∈ Rel(A,B). (fA, fB) ∈ JT K1(Eq ~A,R)}

(f, g) ∈ J∀X.T K1
~R iff ∀R ∈ Rel(A,B). (fA, gB) ∈ JT K1(~R,R) (2)

These definitions are empirically natural, conforming to the intuition that related inputs

are mapped to related outputs. They work, in the sense that key theorems such as the

Identity Extension Lemma and the Abstraction Theorem can be proved from them, but

on the other hand, they lack a theoretical justification as to why they are the way they

are. That is,

Are there universal properties underpinning the definition of J∀X.T K0
~A and J∀X.T K1

~R?
Can these universal properties be used to prove the Identity Extension Lemma and
Abstraction Theorem in an axiomatic manner that is independent of specific models?

This paper answers the above questions positively for a large class of models axiomatically

built from faithful bifibrations which admit full comprehension — this includes, for

instance, subobject bifibrations. We believe this is of interest because the notion of a

universal property is a fundamental mechanism used to give characterisations of key

objects in mathematics, logic and computer science. Universal properties extract the core

essence of structure.

Related work There is a significant body of work on the foundations of parametricity

and, like us, many take a fibrational perspective. This can be traced back to the work

of Hermida in his highly influential thesis [1993] and subsequent work [Hermida, 2006].

Other important work includes that of Ma and Reynolds [1992], who gave the first

categorical framework for parametric polymorphism, Dunphy and Reddy [2004], who

mixed fibrations with reflexive graphs, and Birkedal and Møgelberg [2005], who gave

detailed and sophisticated models of not just parametricity, but of a first order logic

on top of it in the form of Abadi-Plotkin Logic [Plotkin and Abadi, 1993]. Ghani et al.

[2016b] recently combined λ2-fibrations and the fibrational notion of comprehension to

give a sound and complete semantics of relational parametricity.

However, none of these papers tackles the question we tackle in this paper. Indeed,

many follow the modern trend to bake in Identity Extension into their framework. In

contrast, we dig deeper and prove the identity extension property from more primitive

assumptions. Our own paper on parametric models [Ghani et al., 2015a] follows in the

fibrational tradition, but distinguishes itself by using bifibrations. Since our work here

requires bifibrations, this paper builds on the model presented there, and thus further

validates this model.

Structure of the paper We first review Reynolds’ model, and recast his definitions in a

form suitable for generalisation in Section 2. We assume familiarity with category theory,

but we give a brief introduction to fibrations in Section 3, as well as our framework for
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models of System F. In Section 4 we first present the interpretation of ∀-types via a

universal property. We prove that this definition satisfies the Identity Extension Lemma

when instantiated to the subobject bifibration (Lemma 23), and the proof generalises

to the case of faithful bifibrations which admit full comprehension (Lemma 28). The

definition is further general enough to prove the Abstraction Theorem at the same time for

both instantiations. Hence under appropriate assumptions, we have a parametric model of

System F (Theorem 32), which implies that all the expected properties of parametricity

hold. Finally we conclude in Section 5 with some comments on the hypothesis assumed in

this work, and future work.

This paper is an extended version of a paper that appeared in the proceedings of

WoLLIC 2015 [Ghani et al., 2015b]. This version includes the completely new Sections 3.3

and 4.3.2, which generalise the results from the conference version. In particular, while the

conference version only proved that our universal property for parametrically polymorphic

functions was sufficient to prove the Identity Extensional Lemma for subobject fibrations,

this paper proves the result for a much broader class of fibrations — namely faithful

bifibrations which admit full comprehension.

Acknowledgements We thank the anonymous referees for their constructive comments.

This work was supported by EPSRC grants EP/K023837/1, Logical Relations for Program

Verification, and EP/M016951/1, Homotopy Type Theory: Programming and Verification.

2. Reynolds’ Parametrically Polymorphic Functions

We assume the reader is familiar with the syntax of System F and recall only those parts

we need for our development — see e.g. Girard et al. [1989] for more details. In particular,

the type judgements of System F are generated as follows:

Xi ∈ Γ

Γ ` Xi Type

Γ ` T Type Γ ` V Type

Γ ` T → V Type

Γ, X ` T Type

Γ ` ∀X.T Type

where Γ is a set of type variables. The term judgements of System F are of the form

Γ; ∆ ` t : T where T is a System F type definable in the context Γ, and ∆ is a term context

associating distinct variables to a collection of types, each of which is also definable in Γ.

We write Set for the category of sets. Some care is needed here: in a metatheory

using classical logic, there are no non-trivial set-theoretic parametric models of System

F [Reynolds, 1984]. Instead, we should understand the category of sets e.g. internally to

the Calculus of Constructions [Coquand and Huet, 1988] with impredicative Set [Atkey,

2009] (see also Pitts [1987] for other options). We further write Rel for the category whose

objects are relations, i.e. subsets R ⊆ A × B, and whose morphisms (R ⊆ A × B) →
(R′ ⊆ A′ × B′) consist of functions (f : A → A′, g : B → B′) such that if (a, b) ∈ R,

then (fa, gb) ∈ R′. In this case we say that the morphism in Rel is over the pair (f, g).

We write U : Rel → Set × Set for the functor defined by U(R ⊆ A × B) = (A,B),

which we note is faithful. If F , G : |Set| → Set and H : |Rel| → Rel are functors such that

U ◦H = (F ×G) ◦ U , then we say that H is over (F,G). If α : H → H ′, β : F → F ′ and
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β′ : G → G′ are natural transformations between functors with H over (F,G) and H ′

over (F ′, G′), then we say that α is over (β, β′) if U(αR) = βUR × β′UR for every R in Rel.

Using formulas (1) and (2) from the introduction, Reynolds gives a two level se-

mantics for System F where, if Γ ` T Type and |Γ| = n, then JT K0 : |Set|n → Set

and JT K1 : |Rel|n → Rel with JT K1 over (JT K0, JT K0), i.e. if ~R : Reln( ~A, ~B), then

JT K1
~R : Rel(JT K0

~A, JT K0
~B). Reynolds also gives set-valued and relational interpreta-

tions of term contexts ∆ = x1 : T1, . . . , xn : Tn by defining J∆K0 = JT1K0 × · · · × JTnK0

and J∆K1 = JT1K1 × · · · × JTnK1 with J∆K1 over (J∆K0, J∆K0). Reynolds then interprets

each judgement Γ; ∆ ` t : T as a family of functions JtK0S : J∆K0S → JT K0S for each

environment S ∈ |Set||Γ|, and then proves the following theorems, which underpin most

of the uses of parametricity.

Theorem 1 (Identity Extension Lemma). If Γ ` T with |Γ| = n, then (JT K0, JT K1)

is equality-preserving, i.e. JT K1 ◦ Eqn = Eq ◦ JT K0.

Theorem 2 (Abstraction Theorem). If Γ; ∆ ` t : T with |Γ| = n, then for every
~R : Reln( ~A, ~B), if (u, v) ∈ J∆K1

~R then (JtK0
~Au, JtK0

~B v) ∈ JT K1
~R.

So what makes Reynolds’ definitions work? They are certainly fundamental, as can be seen

by their numerous uses by programming language theorists (see e.g. Tse and Zdancewic

[2004], Ahmed and Blume [2008], Ahmed et al. [2009], Hur and Dreyer [2011], Dreyer

et al. [2012]). While valuable, this only provides a partial answer, which ought to be

complemented by a deeper and more fundamental understanding. For us, that takes the

form of showing that the above definitions satisfy axiomatic universal properties, and that

those universal properties are strong enough to prove key theorems such as Theorems 1

and 2 in that axiomatic setting. For function spaces, the answer is simply that JT → V K0

is the exponential of the functors JT K0 and JV K0; and that JT → V K1 is the exponential

of the functors JT K1 and JV K1. These results in turn follow because Rel and Set are

cartesian closed categories, and U preserves this cartesian closed structure, i.e. products

and exponentials of relations are again relations between products and exponentials,

respectively. Our goal is to provide such a succinct and compelling equivalent explanation

for the definitions of J∀X.T K0
~A and J∀X.T K1

~R.

To begin with, note that if we were only to consider ad-hoc polymorphic functions, i.e.

the collection ∏
X:Set

JT K0( ~A,X)

then we could characterise this collection as the product of the functor JT K0( ~A,−) :

Set → Set (näıvely assuming the product exists), that is, as the terminal JT K0( ~A,−)-

cone. Including Reynolds’ condition that a parametrically polymorphic function f :∏
S:SetJT K0( ~A, S) is one where for every relation R : Rel(X,Y ) we have that (fX, fY ) ∈

JT K1(Eq ~A,R) cuts down the number of ad-hoc polymorphic functions. Now the key

bit. Define νX : J∀X.T K0
~A → JT K0( ~A,X) to be type application, i.e. νXf = fX. Then

Reynolds’ parametricity condition that for all R : Rel(A,B), if f : J∀X.T K0
~A, then

(fA, fB) ∈ JT K1(Eq ~A,R) is equivalent to a morphism Eq (J∀X.T K0
~A) → JT K1(Eq ~A,R)

over νA and νB . Generalising, we have:
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Definition 3. Let F = (F0, F1) be a pair of functors with F0 : |Set| → Set and F1 :

|Rel| → Rel such that F1 is over (F0, F0). An F -eqcone is an F0-cone (A : Set, ν : A→ F0)

such that there exists a (necessarily unique since U is faithful) F1-cone (EqA, η : EqA→ F1)

with vertex EqA, and η over (ν, ν). The category of such cones is the full subcategory of

F0-cones whose objects are F -eqcones.

Our axiomatic definition is linked to Reynolds’ definition in the following way:

Theorem 4. Assume Γ, X ` T Type. For every tuple ~A, Reynolds’ set of parametrically

polymorphic functions J∀X.T K0
~A from (2) is the terminal F -eqcone for the pair of functors

F = (JT K0( ~A,−), JT K1(Eq ~A,−)).

Proof. Application at X, defined by νXf = fX, makes J∀X.T K0
~A a vertex of a

JT K0( ~A,−)-cone. The uniformity condition on elements of J∀X.T K0
~A ensures this cone is

an F -eqcone. To see that this is the terminal such, consider any other F -eqcone (A, η). As

this is a JT K0( ~A,−)-cone, there is a unique map η̄ of such cones into
∏
X:SetJT K0( ~A,X).

However, the fact that (A, η) is an F -eqcone means the image of this mediating map

lies within J∀X.T K0
~A. Hence we have a morphism of F -eqcones A → J∀X.T K0

~A. The

uniqueness of this mediating morphism follows from the uniqueness of η̄.

We can also give a universal property to characterise J∀X.T K1
~R.

Definition 5. Let F = (F0, F1) and G = (G0, G1) be pairs of functors |Set| → Set and

|Rel| → Rel with F1 over (F0, F0), G1 over (G0, G0), and let H : |Rel| → Rel with H over

(F0, G0). A fibred (F,G,H)-eqcone consists of an F -eqcone (A, ν : A→ F0), a G-eqcone

(B,µ : B → G0) and a H-cone (Q, γ : Q→ H) over (ν, µ). The category of such cones has

as morphisms triples (f, g, h), where f is a morphism between the underlying F -eqcones,

g is a morphism between the underlying G-eqcones and h is a (again necessarily unique)

morphism of H-cones above (f, g).

The above definition can be understood as follows. For every relation R : Rel(X,Y ) we

need two things to be related, which is forced by γ. That the related things are instances

of polymorphic functions is reflected by the fact that γR is over (νX , µY ). This intuition

can be formalised via the following theorem:

Theorem 6. Assume Γ, X ` T Type. For every relation ~R : Rel( ~A, ~B), the rela-

tion J∀X.T K1
~R from (2) is the terminal fibred (F,G,H)-eqcone for the functors F =

(JT K0( ~A,−), JT K1(Eq ~A,−)), G = (JT K0( ~B,−), JT K1(Eq ~B,−)) and H = JT K1(~R,−).

Proof. Straightforward calculation, similar to the proof of Theorem 4.

The Identity Extension Lemma and the Abstraction Theorem follow from these universal

properties, as we will see in Theorems 23 and 32 in Section 4. First, we turn to our

axiomatic setting for the study of parametricity.
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3. Fibrational Tools

The previous section only covered a specific model, but what we really want is an axiomatic

approach which can then be instantiated. There are a number of axiomatic approaches

to parametricity, e.g. Ma and Reynolds [1992], Dunphy and Reddy [2004], Birkedal and

Møgelberg [2005], Hermida [2006], Ghani et al. [2016b]. As we shall see, our axiomatisation

requires a bifibration, and for this reason, we build upon our own treatment [Ghani et al.,

2015a], whose distinguishing feature is exactly bifibrational structure.

3.1. Fibrations: an introduction

We give a brief introduction to fibrations; for more details see Jacobs [1999].

Definition 7. Let U : E → B be a functor. A morphism g : Q → P in E is cartesian

over f : X → Y in B if Ug = f and, for every g′ : Q′ → P in E with Ug′ = f ◦ v for

some v : UQ′ → X, there exists a unique h : Q′ → Q with Uh = v and g′ = g ◦ h. Dually,

a morphism g : P → Q in E is opcartesian over f : X → Y in B if Ug = f and, for

every g′ : P → Q′ in E with Ug′ = v ◦ f for some v : Y → UQ′, there exists a unique

h : Q→ Q′ with Uh = v and g′ = h ◦ g.

Definition 8. A functor U : E → B is a fibration if for every object P of E and every

morphism f : X → UP in B, there is a cartesian morphism g : Q → P in E over f.

Similarly, U is an opfibration if for every object P of E and every morphism f : UP → Y

in B, there is an opcartesian morphism h : P → Q in E over f . A functor U is a bifibration

if it is both a fibration and an opfibration.

Let U : E → B be a fibration. We say that U is cloven if it comes with a choice of

cartesian liftings, i.e., if for every morphism f : X → Y in B and every object P in E with

U(P ) = Y , there is a chosen cartesian morphism f§P : f∗P → P . Dually, an opfibration

U : E → B is cloven if for every morphism f : X → Y in B and every object P in E
with U(P ) = X, there is a chosen opcartesian morphism fP§ : P → ΣfP . A bifibration is

cloven if it is cloven both as a fibration and as an opfibration. If U is a cloven fibration or

opfibration, then we write f§P for the cartesian morphism over f with codomain P , and

fP§ for the opcartesian morphism over f with domain P respectively. We write f∗P for

the domain of f§P and ΣfP for the codomain of fP§ .

In this paper, we will generally assume that fibrations and opfibrations are cloven.

Example 9. Consider a category B with pullbacks, and let SubB(A) be the category

of subobjects of A ∈ B (i.e. equivalence classes of monos m : X ↪→ A). Let Sub(B)

be the category with objects pairs (A,m) where m is in SubB(A). A morphism (f, α) :

(A,m : X ↪→ A)→ (B,n : Y ↪→ B) consists of morphisms f : A→ B and α : X → Y in

B such that f ◦m = n ◦ α. The functor U : Sub(B)→ B defined by U(A,m) = A is then

a fibration (with reindexing given by pullback), and further a bifibration if B has image

factorisations. This fibration is cloven if B has chosen pullbacks. For B = Set, subobjects

of A can be identified with subsets of A.

If U : E → B is a fibration, opfibration, or bifibration, then E is its total category and B
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is its base category. An object P in E is over its image UP and similarly for morphisms.

A morphism is vertical if it is over id. We write EX for the fibre over an object X in B,

i.e., the subcategory of E of objects over X and vertical morphisms. For each morphism

f : X → Y in B in a cloven fibration, the function mapping an object P of E to f∗P

extends to a reindexing functor f∗ : EY → EX . Dually, in a cloven opfibration, the function

mapping an object P of EX to ΣfP extends to an opreindexing functor Σf : EX → EY .

The assignments f 7→ f∗ and f 7→ Σf are functorial up to isomorphism, i.e. id∗ ∼= id,

f∗ ◦ g∗ ∼= (g ◦ f)∗, Σid
∼= id and Σg ◦ Σf ∼= Σg◦f . When these isomorphisms are identities,

we say that we have a split fibration, opfibration, or bifibration respectively.

We write |E| for the discrete subcategory of E . If U : E → B is a functor, then the

discrete functor |U | : |E| → |B| is induced by the restriction of U to |E|, and is always a

bifibration. If n ∈ N, then En denotes the n-fold product of E in Cat. The n-fold product

of U , denoted Un : En → Bn, is the functor defined by Un(X1, ..., Xn) = (UX1, ..., UXn).

If U is a fibration or opfibration, then so is Un.

3.2. Fibrations of relations

Since Reynolds’ theory of parametricity is about relations, we describe relations in a

fibrational setting. If U is a fibration whose base has products, then the associated

fibration of relations Rel(U) is obtained by change of base along the product functor, i.e.

the following pullback:

Rel(E)
J //

Rel(U)

��

E

U

��
B × B

×
// B.

(3)

If U is a fibration or opfibration, then so is Rel(U). The bifibration Rel → Set × Set

from Section 2 arises as the fibration of relations associated to the subobject fibration

Sub(Set) → Set from Example 9. The map U 7→ Rel(U) can be extended, for every

category B which has products, to a functor Rel : FibB → FibB×B from the category of

fibrations over B and fibred functors to the category of fibrations over B × B and fibred

functors, but we will not make essential use of this fact in the current paper.

To treat equality in this axiomatic framework, we first need the notion of truth. Let

U : E → B be a fibration with (chosen) fibred terminal objects, i.e. each fibre EX has a

(chosen) terminal object KX, and reindexing preserves it. Then the assignment X 7→ KX

extends to the functor K : B → E , called the truth functor. This functor is right adjoint

to U . Furthermore the counit from U ◦K to Id is the identity, and K is full and faithful.

Equality arises axiomatically as follows:

Lemma 10 (Lawvere [1970]). Let U : E → B be a bifibration with fibred terminal

objects. Assume B has products, and write δA = 〈idA, idA〉 : A → A × A. The map

A 7→ ΣδAKA extends to a functor Eq : B → Rel(E), called the equality functor. �

Example 11. The subobject fibration from Example 9 has fibred terminal objects given
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by KA = idA : A ↪→ A. Opreindexing by a mono is by composition in the subobject

fibration, hence equality is given by EqA = δA : A ↪→ A×A.

3.3. Fibrations which admit full comprehension

We have seen in the previous section how relations can be treated abstractly as objects

(A,B,R) in the total category of a certain fibration. Of course, a more concrete — but

less general — approach to relations is to consider them to be spans in the base category

of the fibration.

Definition 12. Let B be a category. The category Span(B) of spans in B has as objects

pairs of morphisms with the same domain

X
s2

  

s1

~~
A B.

A morphism consists of a triple (f, g, h) : (A
s1←− X

s2−→ B)→ (A′
s′1←− X ′

s′2−→ B′) where

f : X → X ′, g : A→ A′ and h : B → B′ are morphisms in B such that s′1 ◦ f = g ◦ s1 and

s′2 ◦ f = h ◦ s2. Alternatively Span(B) is the functor category B·←·→·.

A natural question is whether the abstract, fibrational notion of relation behaves

sufficiently like the concrete, span-based relations so that theorems concerning the latter

can be generalised to the former. The answer is that, yes, this is possible if more

structure is present. This structure is known as comprehension and is used widely in

categorical logic [Jacobs, 1999]. We will give an example of a generalisation of a result

using comprehension in Section 4.3.2. In the current section, we recall the definitions and

basic properties, and explore a formal relationship between fibrational relations and spans:

comprehension guarantees the existence of the functor Rel(P) below — if furthermore

the comprehension is full, then Rel(P) has a left adjoint L:

Rel(E)

Rel(P)
,,

>

Rel(U)
��

Span(B)

〈π1,π2〉
~~

L
ll

B × B.

(4)

At a formal level, this adjunction between Rel(E) and Span(B) allows the transfer of

results mentioned above, but we will not pursue this further in later sections in this article.

We note in passing that much of this structure arises from applying Rel : FibB → FibB×B
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to the diagram

E
P

++

U
��

B→

cod
��
B

up to the isomorphism Rel(B→) ∼= Span(B). Here, comprehension again guarantees the

existence of P, and full comprehension implies that P has a left adjoint B→ → E .

Definition 13 (Ehrhard [1988]). Let U : E → B be a fibration. The fibration U admits

comprehension if it has a truth functor K, and K further has a right adjoint { } : E → B,

called the comprehension functor.

Note that Ehrhard [1988] uses the terminology D-category for the data making up

a fibration admitting comprehension, while Jacobs [1993] uses comprehension category

with unit. The following well-known result shows how comprehension allows objects in

the total category of a fibration to be seen as morphisms in the base category — this

foreshadows our own result showing how objects in the total category of a fibration of

relations can be seen as spans in the base category.

Lemma 14 (Jacobs [1993]). Let U : E → B be a fibration admitting comprehension.

Comprehension { } induces a functor P : E → B→ defined by P(X) = U(εX), where

ε is the unit of the adjunction K a { }. For f : X → Y in E , P(f) is defined by

P(f) = ({f}, U(f)). Furthermore, the assignment πX := U(εX) is a natural transformation

π : { } → U .

Proof. Note that the construction of π relies on U ◦K = Id. Naturality of π follows by

applying U to the naturality of ε. The functor P arises as any natural transformation

induces a functor into the arrow category.

We can adapt the above lemma to the setting of relations and spans as follows:

Lemma 15. Let U : E → B be a fibration admitting comprehension. Comprehension { }
induces a functor Rel(P) : Rel(E)→ Span(B).

Proof. An object (A,B,R) of Rel(E) is by definition an object R of EA×B . The action

of P gives a morphism πR : {R} → A×B which is an object of Span(B). The action of

Rel(P) on morphisms is defined similarly.

The following stronger property will be used in Section 4.3.2:

Definition 16 (Jacobs [1993]). A fibration U : E → B admits full comprehension if U

admits comprehension, and the functor P : E → B→ induced by { } from Lemma 14 is

full and faithful.

In the remainder of this section, we show that full comprehension for a faithful fibration

implies that Rel(P) : Rel(E) → Span(B) has a left adjoint. The candidate functor L :

Span(B)→ Rel(E) can be defined using weaker assumptions:
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Lemma 17. Let U : E → B be a bifibration with truth functor K. The map which sends

A
s1←− X

s2−→ B in Span(B) to (A,B,Σ〈s1,s2〉KX) extends to a functor L : Span(B) →
Rel(E).

Proof. Given a morphism (f, g, h) : (A
s1←− X s2−→ B)→ (A′

s′1←− X ′ s
′
2−→ B′) in Span(B),

L(f, g, h) is defined using the universal property of 〈s1, s2〉§KX in the following diagram

Σ〈s1,s2〉KX
φ(f,g,h) // Σ〈s′1,s′2〉KX

′

KX

〈s1,s2〉§KX

OO

Kf
// KX ′

〈s′1,s
′
2〉
§
KX′

OO

over the diagram

A×B
g×h // A′ ×B′

X

〈s1,s2〉

OO

f
// X ′.

〈s′1,s
′
2〉

OO

in B, which commutes since (f, g, h) is a morphism in Span(B).

Working towards the adjunction L a Rel(P), we first need a simple technical result.

Lemma 18. Let U : E → B be a fibration admitting comprehension. For every A in B,

the morphism πKA is an isomorphism πKA : {KA} ∼= A.

Proof. Since K is full and faithful, the unit η of the adjunction K a { } is a natural

isomorphism. Using the triangle identity εKA ◦ K(ηA) = id we have εKA = K(ηA)−1.

Finally πKA = U(εKA) : {KA} ∼= A.

We can now show that L actually is left adjoint to Rel(P), assuming a little extra

structure:

Theorem 19. Let U : E → B be a faithful bifibration with truth functor K and full

comprehension. Then L a Rel(P).

Proof. We describe a natural isomorphism

Rel(E)(L(A
s1←− X s2−→ B), (A′, B′, R′)) ∼= Span(B)((A

s1←− X s2−→ B),Rel(P)(A′, B′, R′)).

Given (f, g, α) : (A,B,Σ〈s1,s2〉KX) → (A′, B′, R′) in Rel(E), consider the composition

α ◦ 〈s1, s2〉§ : KX → R′ in E . By applying P, we obtain the commuting diagram

{KX}
{〈s1,s2〉§} //

πKX

��

{Σ〈s1,s2〉KX}
{α} //

πΣ〈s1,s2〉
KX

��

{R′}

πR′

��
X

〈s1,s2〉
// A×B

f×g
// A′ ×B′.
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and since πKX is an isomorphism by Lemma 18, this gives a morphism from 〈s1, s2〉 : X →
A×B to πR′ : {R′} → A′ ×B′. We hence map (f, g, α) to ({α ◦ 〈s1, s2〉§} ◦ π−1

KX , f, g).

In the other direction, consider (f, f0 × f1) : 〈s1, s2〉 → πR′ in Span(B). Using the

universal property of 〈s1, s2〉§ we obtain

KX
Kf //

〈s1,s2〉§ %%

K{R′}
εR′ // R′

Σ〈s1,s2〉KX

f#

::

over the diagram

X
f //

〈s1,s2〉 ""

{R′}
πR′ // A′ ×B′

A×B
f0×f1

99

in B, which commutes since (f, f0, f1) is a morphism in Span(B). We map (f, f0 × f1) to

(f0, f1, f
#).

It remains to check that these maps are each other’s inverses. In one direction, this

amounts to checking that α = ({α ◦ 〈s1, s2〉§} ◦ π−1
KX)#, which follows since α satisfies

the universal property defining ({α ◦ 〈s1, s2〉§} ◦ π−1
KX)#, by naturality of εR. In the other

direction, we need to show that f = {f# ◦ 〈s1, s2〉§} ◦π−1
KX . These morphisms respectively

make the following diagrams commute:

{KX}

πKX

��

f◦πKX // {R′}

πR′

��
X

〈f0◦s1,f1◦s2〉
// A′ ×B′

{KX}

πKX

��

{f#◦〈s1,s2〉§} // {R′}

πR′

��
X

〈f0◦s1,f1◦s2〉
// A′ ×B′

By fullness of P , there exists ρ, ρ′ : KX → R′ with {ρ} = f ◦πKX , U(ρ) = 〈f0◦s1, f1◦s2〉,
{ρ′} = {f# ◦ 〈s1, s2〉§} and U(ρ′) = 〈f0 ◦ s1, f1 ◦ s2〉. By faithfulness of U , ρ = ρ′ and

hence f = {ρ} ◦ π−1
KX = {ρ′} ◦ π−1

KX = {f# ◦ 〈s1, s2〉§} ◦ π−1
KX as required.

3.4. Parametricity: a model using bifibrations

Let U : E → B and U ′ : E ′ → B′ be fibrations. A fibred functor T : U → U ′ comprises two

functors T0 : B → B′ and T1 : E → E ′ such that T1 is over T0, i.e. U ′ ◦ T1 = T0 ◦ U , and

T1 preserves cartesian morphisms. If T ′ : U → U ′ is another fibred functor, then a fibred

natural transformation ν : T → T ′ comprises two natural transformations ν0 : T0 → T ′0
and ν1 : T1 → T ′1 such that U ′ ν1 = ν0 U . Note that in the case of fibred functors

|Rel(U)| → Rel(U), the requirement that cartesian morphisms are preserved is vacuous.

Nevertheless, we will avoid introducing more terminology and stick with ‘fibred’ also in

this case.

Armed with these definitions, we can introduce the axiomatic framework for para-

metricity within which we can generalise the universal properties of Section 2. Given a
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bifibration U : E → B with appropriate structure (see Section 4.4), we interpret types

Γ ` T as fibred functors JT K = (JT K0 × JT K0, JT K1) : |Rel(E)||Γ| → Rel(E), and terms

Γ; ∆ ` t : T as fibred natural transformations (JtK0 × JtK0, JtK1) : J∆K → JT K. Thus a

type T has a “standard” semantics JT K0, as well as a relational semantics JT K1. The

interpretation can be summed up as follows:

|Rel(E)||Γ|
J∆K1

++

JT K1

33�� JtK1

|Rel(U)||Γ|

��

Rel(E)

Rel(U)

��
|B||Γ| × |B||Γ|

J∆K0×J∆K0

++

JT K0×JT K0

33�� JtK0×JtK0 B × B

(5)

In Reynolds’ model, the Abstraction Theorem states that if ~R : |Rel(E)||Γ|( ~A, ~B), and

(u, v) ∈ J∆K1
~R, then (JtK0

~Au, JtK0
~B v) ∈ JT K1

~R. This is equivalent to a natural transfor-

mation JtK1 over (JtK0, JtK0). Thus the existence of JtK1 is the fibrational analogue of the

Abstraction Theorem. See Ghani et al. [2015a] for more details.

4. Parametrically Polymorphic Functions, Axiomatically

We now turn to the universal property we will use to define the object of parametrically

polymorphic functions in our axiomatic framework. We carefully formulated the definitions

of Section 2 so that they seamlessly generalise once we have axiomatic notions of relations

and equality, which we developed in Section 3. We assume for the rest of the paper

that the fibration U : E → B is faithful. We discuss this assumption in the conclusion in

Section 5.

4.1. Eqcones and fibred eqcones

We start by generalising the definition of eqcones for a faithful fibration U : E → B and

the fibration of relations Rel(U) : Rel(E)→ B × B obtained via change of base from U .

Definition 20. Let F = (F0, F1) be a pair of functors with F0 : |B| → B and

F1 : |Rel(E)| → Rel(E) such that F1 is over (F0, F0). An F -eqcone is an F0-cone (A, ν :

A→ F0) such that there exists a (necessarily unique since U is faithful) F1-cone (EqA, η)

with vertex EqA, and η over (ν, ν). The category of such cones is the full subcategory of

F0-cones whose objects are F -eqcones. We denote the terminal object of this category

∀0F , if it exists.

The universal property defining the relational interpretation of parametrically polymorphic

functions smoothly generalises also to the fibrational setting:

Definition 21. Let F = (F0, F1) and G = (G0, G1) be pairs of functors |B| → B and

|Rel(E)| → Rel(E) with F1 over (F0, F0), G1 over (G0, G0), and let H : |Rel(E)| → Rel(E)

with H over (F0, G0). A fibred (F,G,H)-eqcone consists of an F -eqcone (A, ν : A→ F0),
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a G-eqcone (B,µ : B → G0) and an H-cone (Q, γ : Q→ H) such that Q is over A×B,

and γ is over (ν, µ). A morphism (A, ν,B, µ,Q, γ)→ (A′, ν′, B′, µ′, Q′, γ′) in the category

of such cones consists of triples (f, g, h) where f : (A, ν)→ (A′, ν′), g : (B,µ)→ (B′, µ′),

and h is a (again necessarily unique) morphism of H-cones above (f, g). We denote the

terminal object of this category ∀1(F,G,H), if it exists. By abuse of notation, we denote

by ∀1(F,G,H) also the vertex of the H-cone in ∀1(F,G,H); it will always be clear from

context to which one we refer.

In the rest of the section we show how to interpret ∀-types using our axiomatic definition.

We show that they support:

(i) A Fibred Semantics: Our axiomatic definitions do not by definition guarantee that

the relational interpretation of ∀X.T is a relation between object level interpretations

of the same type, so we prove this axiomatically.
(ii) The Identity Extension Lemma: Since we do not “bake-in” the Identity Extension

Lemma using for example reflexive graphs, we need to prove it.
(iii) The Abstraction Theorem: We prove the Abstraction Theorem in the axiomatic

setting. Most of the work in doing so involves the construction of a model of System

F in the form of a λ2-fibration.

We prove the Identity Extension Lemma (ii) for subobject fibrations first, and then

generalise it to the case of fibrations which admit full comprehension. The proofs of the

fibred semantics (i) and of the Abstraction Theorem (iii) do not require an instantiation

to any particular fibration. These proofs are general enough that they can be derived

uniformly from Definitions 20 and 21.

4.2. A Fibred Semantics

Our proof that if ~R : Reln( ~A, ~B), then J∀X.T K1
~R is a relation between J∀X.T K0

~A and

J∀X.T K0
~B crucially requires opfibrational structure, which plays a distinguishing role in

our framework [Ghani et al., 2015a].

Lemma 22. Let F = (F0, F1) and G = (G0, G1) be pairs of functors |B| → B and

|Rel(E)| → Rel(E) with F1 over (F0, F0), G1 over (G0, G0), and let H : |Rel(E)| → Rel(E)

with H over (F0, G0). Then ∀1(F,G,H) is over ∀0F × ∀0G.

Proof. The forgetful functor which maps a fibred (F,G,H)-eqcone to its pair of un-

derlying F -eqcones and G-eqcones is an opfibration, since it inherits the opfibrational

structure of Rel(U) : Rel(E)→ B × B. For any opfibration V : D → C which has terminal

objects 1C in the base and 1D in the total category, Σ!1D is isomorphic to 1D and hence we

have a terminal object Σ!1D in D over 1C , where ! : V (1D)→ 1C is the unique morphism

from V (1D) to the terminal object. Since terminal objects are defined up to isomorphism,

we can take ∀1(F,G,H) to be over ∀0F × ∀0G.

This lemma, when taken with the usual treatment of function spaces (and assuming ∀0

and ∀1 exist), ensures that we have replicated Reynolds’ original fibred semantics within

our axiomatic framework. That is, for all judgements Γ ` T Type, (JT K0 × JT K0, JT K1)

forms a fibred functor |Rel(U)|n → Rel(U).
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4.3. The Identity Extension Lemma

The Identity Extension Lemma is, with the Abstraction Theorem, a key property which

characterises parametricity. We saw in Section 2 that our axiomatisation gives the right

interpretation of ∀-types for relations over sets, and the Identity Extension Lemma can

be proven from that. The relations over sets arise from a particular fibration of relations

obtained via change of base from the subobject fibration over Set. We now show that

the Identity Extension Lemma can be proven instantiating our axiomatisation with any

subobject bifibration in Section 4.3.1. We then generalise this further to bifibrations with

full comprehension in Section 4.3.2.

4.3.1. Subobject Fibrations. In a subobject fibration, Eq : B → Rel(E) maps an object X

to the mono 〈idX , idX〉 : X ↪→ X ×X. Thus we need to show:

Lemma 23. Let U be a subobject bifibration and (F0 × F0, F1) : |Rel(U)| → Rel(U) a

fibred functor. Assume F = (F0, F1) is equality preserving, i.e. F1 ◦Eq = Eq◦F0. Then the

subobject 〈v1, v2〉 : ∀1(F, F, F1) ↪→ ∀0F × ∀0F is Eq(∀0F ) = 〈id, id〉 : ∀0F ↪→ ∀0F × ∀0F .

Proof. The heart of the proof is to show that v1 = v2. To see this, let πX : ∀0F →
F0X be the projection maps associated with ∀0F , and let γR : ∀1(F, F, F1) → F1R be

the projection maps associated with ∀1(F, F, F1). By Lemma 22, for every X, γEqX :

∀1(F, F, F1) → F1(EqX) = Eq(F0X) = F0X is over (πX , πX). By the definition of the

equality functor in a subobject fibration, we have

∀1(F, F, F1)
γEqX //

〈v1,v2〉
��

F1(EqX) = Eq(F0X) = F0X

〈id,id〉
��

∀0F × ∀0F πX×πX
// F0X × F0X

Thus πXv1 = γEqX = πXv2 and (∀1(F, F, F1), γEq−) is a F -eqcone with F1-cone given by

γR. Hence both v1 and v2 are mediating morphisms into the terminal F -eqcone, and thus

v1 = v2. Furthermore, they are vertical since 〈id, id〉 ◦ vi = 〈v1, v2〉. We can now show that

Eq(∀0F ) is isomorphic to ∀1(F, F, F1). In one direction, Eq(∀0F ) is easily seen to be a

fibred (F, F, F1)-eqcone and hence there is a map of subobjects Eq(∀0F )→ ∀1(F, F, F1).

In the other direction, v1 is a map of subobjects since v1 = v2. These maps are mutually

inverse, as they are both vertical and the fibration is faithful.

The Identity Extension Lemma for fibred functors (T0 × T0, T1) : Rel(U)|n+1 → Rel(U)

immediately follows by instantiating F0 = T0( ~A,−) and F1 = T1(Eq ~A,−). When taken

with an appropriate treatment of arrow types, this lemma shows that in our axiomatic

setting instantiated to subobject fibrations, all type expressions are interpreted not just

as fibred functors Rel(U)|n → Rel(U), but as equality preserving fibred functors.

4.3.2. Faithful Bifibrations Which Admit Full Comprehension. We now generalise the

previous section to faithful bifibrations which admit full comprehension. In order to do

so, we first prove some properties of the comprehension functor. Consider a bifibration
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Rel(U) : Rel(E) → B × B obtained via change of base as in (3). We define the functor

S : E → Rel(E) as follows:

Lemma 24. The map on objects P 7→ ΣδUPP extends to a functor S : E → Rel(E).

Proof. The functor S acts on a morphism f : P → Q in E via the universal property of

(δX)§ as in the following diagram

P

f

��

(δX)§ // ΣδXP

S(f)

��
Q

(δY )§

// ΣδY Q

over the diagram

X

U(f)

��

δX // X ×X

U(f)×U(f)

��
Y

δY

// Y × Y.

in B which obviously commutes.

Lemma 25. The functor S : E → Rel(E) is left adjoint to the projection functor

J : Rel(E)→ E in (3).

Proof. We explicitly give the unit η and counit ε of the adjunction since we will

use them later. The unit component ηP : P → ΣδUPP is given by ηP = (δUP )§. The

counit component ε(A,B,R) : (A×B,A×B,ΣδA×BR)→ (A,B,R), is given by ε(A,B,R) =

(π1, π2, pA,B), where π1 and π2 are, respectively, the first and second projections, while

pA,B is given by the universal property of (δA×B)§ with respect to the diagram

R
(δA×B)§ //

id

��

ΣδA×BR

pA,B
xx

R

over the commuting diagram

A×B
δA×B //

id

��

(A×B)× (A×B)

π1×π2uu
A×B.

in B. Naturality and the triangle identities follow from direct calculation and bifibrational

properties.



N. Ghani, F. Nordvall Forsberg and F. Orsanigo 16

Hence we have a string of adjunctions

Rel(E)

J

66⊥ E
S

tt

{ }

77⊥ B.
K

xx

Note that Eq = S ◦ K. By composing the adjunctions, we obtain Eq a {J( )}. From

now on, we will assume that the equality functor is full and faithful. This is a standard

assumption in the semantics of parametricity, and corresponds to e.g. the identity condition

of Dunphy and Reddy [2004], or very strong equality in Birkedal and Møgelberg [2005].

This assumption is also used elsewhere in order to derive the usual consequences of

parametricity in our bifibrational axiomatisation [Ghani et al., 2015a].

Before proving the Identity Extension Lemma, we need one more technical result about

the comprehension functor.

Lemma 26. If Eq is full and faithful, then the unit of the adjunction Eq a {J( )} is an

isomorphism η
Eq,{J}
A : A ∼= {ΣδKA}. Moreover πEq(A) = δ ◦ (ηEq,{J})−1.

Proof. Consider the following diagram:

A
η
K,{ }
A //

id

��

{KA}

πKA

��

{(δA)§} // {ΣδKA}
πΣδKA

��
A

id
// A

δ
// A×A.

The left square commutes since it arises as the application of U to the triangle identity

ε
K,{ }
KA ◦ KηK,{ }A = id. The right square commutes since it is given by P((δA)§). The

morphism (δA)§ is the unit of the adjunction S a J , and the composition {(δA)§} ◦ ηK,{ }A

is the unit η
Eq,{J}
A of the adjunction Eq a {J(−)}, which is an isomorphism since Eq is

full and faithful by assumption. Hence πEq(A) = δ ◦ (η
Eq,{J}
A )−1.

Lemma 27. Assume Eq is full and faithful. Let U be a bifibration which admits compre-

hension, and F = (F0 × F0, F1) : |Rel(U)| → Rel(U) be a fibred functor with F = (F0, F1)

equality preserving, i.e. F1 ◦ Eq = Eq ◦ F0. Then, if ∀1(F, F, F1) and ∀0F exist, the

morphism π∀1F1
= 〈v1, v2〉 : {∀1(F, F, F1)} → ∀0F × ∀0F is such that v1 = v2.

Proof. The terminal fibred eqcone comes, for every object A in B, with a morphism

γEq(A) over (νA, νA), which, by Lemma 26 and equality preservation, is sent by P to the

commuting diagram

{∀1(F, F, F1)}

〈v1,v2〉
��

(η
Eq,{J}
F0A

)−1◦{γEq(A)}
// F0(A)

δ

��
∀0F × ∀0F νA×νA

// F0(A)× F0(A)

from which we conclude ν ◦ v1 = ν ◦ v2.
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The system ({∀1(F, F, F1)}, ν− ◦ v1) defines an F -eqcone, where the equality cone part

is given by precomposing the terminal F -eqcone (∀0F0, ν) with Eq(v1) : Eq({∀1F1}) →
Eq(∀0F ). It follows that both v1 and v2 define an eqcone morphism from ({∀1F1}, ν ◦ v1)

to the terminal eqcone (∀0F, ν), hence v1 = v2 by uniqueness.

Lemma 28. Assume Eq is full and faithful. Let U be a faithful bifibration which admits

full comprehension, and F = (F0 × F0, F1) : |Rel(U)| → Rel(U) be a fibred functor with

F = (F0, F1) equality preserving, i.e. F1 ◦ Eq = Eq ◦ F0. The vertex of the F1-cone in

∀1(F, F, F1) is isomorphic to Eq(∀0F ), if it exists.

Proof. We give two vertical morphisms h : Eq(∀0F )→ ∀1(F, F, F1) and s : ∀1(F, F, F1)→
Eq(∀0F ) and since the fibration is faithful, their compositions are necessarily identity

morphisms.

The terminal F -eqcone (∀0F, ν) defines a fibred (F, F, F1)-eqcone whose F1-cone vertex

is Eq(∀0F ) and the vertices of the F -eqcones are ∀0F . There is an unique morphism h

from this cone to ∀1(F, F, F1) and it is vertical since they are both over (∀0F,∀0F ).

For the morphism s in the other direction, by Lemmas 26 and 27, we have a commuting

diagram

{∀1(F, F, F1)} v1 //

〈v1,v2〉
��

∀0F

δ

��

η
Eq,{J}
∀0F // {Eq(∀0F )}

πEq(∀0F )

��
∀0F × ∀0F

id
// ∀0F × ∀0F

id
// ∀0F × ∀0F.

and using fullness and faithfulness of P , there is an unique morphism s : ∀1F1 → Eq(∀0F )

such that {s} = η
Eq,{J}
∀0F

◦ v1 and U(s) = id.

Again, the Identity Extension Lemma for fibred functors (T0 × T0, T1) : |Rel(U)|n+1 →
Rel(U) immediately follows by instantiating Lemma 28 with F0 = T0( ~A,−) and F1 =

T1(Eq ~A,−). When taken with an appropriate treatment of arrow types, these lemmas

show that once again in our axiomatic setting, all type expressions are interpreted not

just as fibred functors |Rel(U)|n → Rel(U), but as equality preserving fibred functors. We

now turn to the construction of a model exploiting this fact, from which we derive our

axiomatic proof of the Abstraction Theorem.

4.4. The Abstraction Theorem

As described in the concrete model in Section 2, and in the axiomatic framework of

Section 4, Reynolds interprets System F types as equality preserving fibred functors. In

order to interpret terms — and then establish the Abstraction Theorem — we must

therefore discuss models. For our purposes, the notion of a λ2-fibration [Seely, 1987,

Jacobs, 1999] as a generic model of System F is most directly applicable.

Recall that a (split) fibration p : E → B has a generic object Ω ∈ B if there is a collection

of isomorphisms θI : B(I,Ω) ∼= EI , natural in I, and that p has simple Ω-products if each

reindexing π∗ along a projection π : A × Ω → A has a right adjoint ΠA : EA×Ω → EA
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such that the Beck-Chevalley condition holds, i.e. f∗ ◦ ΠB = ΠA ◦ (f × id)∗ for every

f : A→ B.

Definition 29 (λ2-fibration). A fibration p : E → B is a λ2-fibration if it is fibred

Cartesian closed, B has finite products, p has a generic object Ω ∈ B, and p has simple

Ω-products.

We have already taken the first steps towards a model, by showing that types in n free

variables can be modelled as equality preserving fibred functors |Rel(U)|n → Rel(U). We

now complete the construction, based upon our axiomatic definitions. We first define the

fibres of the λ2-fibration, and then the base category:

Construction 30. For each natural number n, let the category FEq
n have as objects

equality preserving fibred functors of the form (F0 × F0, F1) : |Rel(U)|n → Rel(U).

Morphisms are fibred natural transformation of the form (τ0 × τ0, τ1) : (F0 × F0, F1)→
(G0 × G0, G1). Let L be the category with the natural numbers as objects, and where

morphisms n→ m are m-tuples of objects of FEq
n .

This clearly defines a split fibration FEq → L with reindexing given by composition.

The base category has finite products given by addition. In particular, the projection

π : n+1→ n has as ith component the fibred functor |Rel(U)|n+1 → Rel(U) which selects

the ith input. By construction, 1 is a generic object. Our previous paper showed how the

fibred cartesian closed structure arises from standard structure, e.g. that B is cartesian

closed, U : E → B is fibred cartesian closed and has simple products, and that the functor

Eq has a left adjoint satisfying Frobenius [Ghani et al., 2015a, Lemma 4.4]. In the case

of subobject fibrations, it is enough to ask that the base B is a regular LCCC and has

coequalisers [Jacobs, 1999, Cor. 1.9.9, Prop. 4.8.6, and Prop. 9.2.4.]. All that is left to

prove is that we have simple 1-products.

Lemma 31. If terminal fibred eqcones exist, then for each projection π : n + 1 →
n, the functor π∗ : FEq

n → FEq
n+1 has a right adjoint Π = (Π0,Π1) with (Π0F ) ~A =

∀0(F0( ~A,−), F1(Eq ~A,−)) and

(Π1F )~R = ∀1((F0( ~A,−), F1(Eq ~A,−)), (F0( ~B,−), F1(Eq ~B,−)), F1(~R,−))

and the Beck-Chevalley condition holds.

Proof. We show there is a natural isomorphism between π∗G → F and G → ΠF ,

where F is in FEq
n+1 and G is in in FEq

n . Consider a fibred natural transformation (τ, ξ) :

π∗G → F . Note that (π∗G)0( ~A,X) = G0( ~A) for every X. Hence τ ~A,− and ξEq ~A,−
define an (F0( ~A,−), F1(Eq ~A,−))-eqcone with vertex G0( ~A), so that there is a a map

ρ0 : G0( ~A) → (Π0F ) ~A into the terminal such. Similarly ξ~R,− over (τ ~A,−, τ ~B,−) defines

an fibred ((F0( ~A,−), F1(Eq ~A, )), (F0( ~B, ), F1(Eq ~B,−), F1(~R, ))-eqcone and there is an

unique morphism ρ1 : G1(~R) → (Π1F )~R which together with ρ0 makes up a fibred

natural transformation G → ΠF . In the other direction, composition with the proj-

ections (νA, νB , γR) turns natural transformations G→ ΠF into natural transformations

π∗G→ F . By the universal property of terminal fibred eqcones, these correspondences



Universal properties for universal types in bifibrational parametricity 19

are mutually inverse. The Beck-Chevalley condition boils down to the fact that both

(f∗ ◦ Πm)F ~A and (Πn ◦ (f × id)∗)F ~A are defined to be the terminal eqcone for the same

functor F (f ~A,−).

To summarise, in this section we have proven (using the assumptions from Ghani et al.

[2015a, Lemma 4.4]):

Theorem 32. Let B be cartesian closed, and U : E → B be a faithful bifibration which is

fibred cartesian closed, has simple products, and admits full comprehension. Assume that

Eq is full, and has a left adjoint satisfying Frobenius, and assume that terminal fibred

eqcones exist. Construction 30 then gives rise to a λ2-fibration, where types are interpreted

as fibred functors, and terms as fibred natural transformations. By construction, the

Abstraction Theorem holds in the sense of (5). �

From this theorem, together with Lemma 28, all the usual expected consequences of

parametricity — e.g. the existence of initial algebras and final coalgebras, dinaturality —

follow. See our other paper [Ghani et al., 2015a] for details and examples of models.

5. Conclusion

We have taken Reynolds’ definition of the set of parametric polymorphic functions in his

relational model, and given an abstract characterisation of it as a universal property in an

axiomatic bifibrational framework. Further, we have shown the value of the axiomatisation

by proving the two key theorems of parametricity from it, i.e. the Identity Extension

Lemma and the Abstraction Theorem. We did this in a fully axiomatic setting of faithful

bifibrations which admit full comprehension.

Throughout this paper, we worked with faithful fibrations. Faithfulness is a reasonable

assumption, as it corresponds to proof-irrelevant relations — a standing assumption

in the literature. We are in the process of lifting this restriction, and thereby tackling

proof-relevant parametricity [Ghani et al., 2016a, Orsanigo, 2017]. This is a significant

undertaking as it involves blending parametricity with higher dimensional cubical structure

that, intriguingly, also arises in the semantics of Homotopy Type Theory [Bezem et al.,

2014].
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