
Induction-Induction Part 2
Specifying quotient inductive-inductive types

Fredrik Nordvall Forsberg
University of Strathclyde, Glasgow

Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus

TYPES 2018, Braga, 21 June 2018



What is equality?

In Intensional Martin-Löf Type Theory [Martin-Löf 1972]:
• Equality type is smallest reflexive relation.
• In other words, equality type characterises judgemental equality.
• But judgemental equality is machine-checkable, so bound to be

disappointing for humans.

In Observational Type Theory [Altenkirch, McBride 2006]:
• Equality characterises observable behaviour rather than intensionally

same construction.
• Well-behaved computational properties are retained by making

equality proof-irrelevant.

In Homotopy Type Theory [Awodey, Warren 2009; Voevodsky 2010]:
• Homotopical models suggest that equality can be given much more

intricate proof-relevant structure.
• Equality type ≡A provides access to this structure, and is morally part

of A (cf. cubicaltt [Cohen, Coquand, Huber, Mörtberg 2015]).

2



What is equality?
In Intensional Martin-Löf Type Theory [Martin-Löf 1972]:
• Equality type is smallest reflexive relation.
• In other words, equality type characterises judgemental equality.
• But judgemental equality is machine-checkable, so bound to be

disappointing for humans.

In Observational Type Theory [Altenkirch, McBride 2006]:
• Equality characterises observable behaviour rather than intensionally

same construction.
• Well-behaved computational properties are retained by making

equality proof-irrelevant.

In Homotopy Type Theory [Awodey, Warren 2009; Voevodsky 2010]:
• Homotopical models suggest that equality can be given much more

intricate proof-relevant structure.
• Equality type ≡A provides access to this structure, and is morally part

of A (cf. cubicaltt [Cohen, Coquand, Huber, Mörtberg 2015]).

2



What is equality?
In Intensional Martin-Löf Type Theory [Martin-Löf 1972]:
• Equality type is smallest reflexive relation.
• In other words, equality type characterises judgemental equality.
• But judgemental equality is machine-checkable, so bound to be

disappointing for humans.

In Observational Type Theory [Altenkirch, McBride 2006]:
• Equality characterises observable behaviour rather than intensionally

same construction.
• Well-behaved computational properties are retained by making

equality proof-irrelevant.

In Homotopy Type Theory [Awodey, Warren 2009; Voevodsky 2010]:
• Homotopical models suggest that equality can be given much more

intricate proof-relevant structure.
• Equality type ≡A provides access to this structure, and is morally part

of A (cf. cubicaltt [Cohen, Coquand, Huber, Mörtberg 2015]).

2



What is equality?
In Intensional Martin-Löf Type Theory [Martin-Löf 1972]:
• Equality type is smallest reflexive relation.
• In other words, equality type characterises judgemental equality.
• But judgemental equality is machine-checkable, so bound to be

disappointing for humans.

In Observational Type Theory [Altenkirch, McBride 2006]:
• Equality characterises observable behaviour rather than intensionally

same construction.
• Well-behaved computational properties are retained by making

equality proof-irrelevant.

In Homotopy Type Theory [Awodey, Warren 2009; Voevodsky 2010]:
• Homotopical models suggest that equality can be given much more

intricate proof-relevant structure.
• Equality type ≡A provides access to this structure, and is morally part

of A (cf. cubicaltt [Cohen, Coquand, Huber, Mörtberg 2015]).
2



Higher Inductive Types

Inductive Types freely given by:
• value constructors (constructs elements)

• equality constructors (constructs equalities)

Applications:

• Synthetic homotopy theory:
I Definition of the circle S1, with π1(S1) = Z,
I Higher spheres Sn,
I The Hopf fibration, . . .

• Quotidian applications:
I Cauchy Reals Rc,
I the Partiality monad (−)⊥,
I Type Theory in Type Theory.

3



Higher Inductive Types

Higher Inductive Types freely given by:
• value constructors (constructs elements)
• equality constructors (constructs equalities)

Applications:

• Synthetic homotopy theory:
I Definition of the circle S1, with π1(S1) = Z,
I Higher spheres Sn,
I The Hopf fibration, . . .

• Quotidian applications:
I Cauchy Reals Rc,
I the Partiality monad (−)⊥,
I Type Theory in Type Theory.

3



Higher Inductive Types

Higher Inductive Types freely given by:
• value constructors (constructs elements)
• equality constructors (constructs equalities)

Applications:

• Synthetic homotopy theory:
I Definition of the circle S1, with π1(S1) = Z,
I Higher spheres Sn,
I The Hopf fibration, . . .

• Quotidian applications:
I Cauchy Reals Rc,
I the Partiality monad (−)⊥,
I Type Theory in Type Theory.

3



Quotient Inductive-Inductive Types

Quotient Inductive Types (QITs): HITs with trivial higher structure
(set-level HITs). [Hofmann 1995]

Inductive-inductive types (IITs): inductive types depending on each other,
e.g.

A : Set B : A→ Set

mutually defined, both defined by induction. [N.F. 2013]

Quotient Inductive-Inductive Types (QIITs): QITs + IITs = QIITs.

All quotidian applications of HITs are QIITs.

4



Quotient Inductive-Inductive Types

Quotient Inductive Types (QITs): HITs with trivial higher structure
(set-level HITs). [Hofmann 1995]

Inductive-inductive types (IITs): inductive types depending on each other,
e.g.

A : Set B : A→ Set

mutually defined, both defined by induction. [N.F. 2013]

Quotient Inductive-Inductive Types (QIITs): QITs + IITs = QIITs.

All quotidian applications of HITs are QIITs.

4



Quotient Inductive-Inductive Types

Quotient Inductive Types (QITs): HITs with trivial higher structure
(set-level HITs). [Hofmann 1995]

Inductive-inductive types (IITs): inductive types depending on each other,
e.g.

A : Set B : A→ Set

mutually defined, both defined by induction. [N.F. 2013]

Quotient Inductive-Inductive Types (QIITs): QITs + IITs = QIITs.

All quotidian applications of HITs are QIITs.

4



Type theory in type theory as a QIIT

Simplified adaption after Altenkirch and Kaposi [2016]:

data Con : Set
data Ty : Con → Set

ε : Con
ext : (Γ : Con) → Ty Γ → Con
U : (Γ : Con) → Ty Γ
σ : (Γ : Con) → (A : Ty Γ) → Ty (ext ΓA) → Ty Γ
σeq : (Γ : Con) → (A : Ty Γ) → (B : Ty (ext ΓA))

→ (ext (ext Γ A) B ≡Con ext Γ (σ Γ A B))

5



Challenging features

• Constructors for Con refer to Ty (and vice versa):

ext : (Γ : Con)→ Ty Γ → Con

• Constructors refer to previous constructors in their type:

σ : (Γ : Con)→ (A : Ty Γ)→ Ty (ext ΓA) → Ty Γ

• “Path constructors” construct equalities, not elements:

σeq : (Γ : Con)→ (A : Ty Γ)→ (B : Ty (ext ΓA))

→ (ext (ext ΓA)B ≡Con ext Γ (σ ΓAB))

6



Challenging features

• Constructors for Con refer to Ty (and vice versa):

ext : (Γ : Con)→ Ty Γ → Con

• Constructors refer to previous constructors in their type:

σ : (Γ : Con)→ (A : Ty Γ)→ Ty (ext ΓA) → Ty Γ

• “Path constructors” construct equalities, not elements:

σeq : (Γ : Con)→ (A : Ty Γ)→ (B : Ty (ext ΓA))

→ (ext (ext ΓA)B ≡Con ext Γ (σ ΓAB))

6



Challenging features

• Constructors for Con refer to Ty (and vice versa):

ext : (Γ : Con)→ Ty Γ → Con

• Constructors refer to previous constructors in their type:

σ : (Γ : Con)→ (A : Ty Γ)→ Ty (ext ΓA) → Ty Γ

• “Path constructors” construct equalities, not elements:

σeq : (Γ : Con)→ (A : Ty Γ)→ (B : Ty (ext ΓA))

→ (ext (ext ΓA)B ≡Con ext Γ (σ ΓAB))

6



This work: specifying QIITs

How do we represent such definitions, in general?

How do we know that we have derived the right elimination rules?

We will take an (internal) “semantics-inspired” perspective, and specify
QIITs as initial objects in a category of algebras;

Then derive/show that initiality corresponds exactly to ordinary elimination
rules. The key lemma used is that the category of algebras is complete.

Related/alternative work: Kaposi-Kovács [2018].

7



This work: specifying QIITs

How do we represent such definitions, in general?

How do we know that we have derived the right elimination rules?

We will take an (internal) “semantics-inspired” perspective, and specify
QIITs as initial objects in a category of algebras;

Then derive/show that initiality corresponds exactly to ordinary elimination
rules. The key lemma used is that the category of algebras is complete.

Related/alternative work: Kaposi-Kovács [2018].

7



This work: specifying QIITs

How do we represent such definitions, in general?

How do we know that we have derived the right elimination rules?

We will take an (internal) “semantics-inspired” perspective, and specify
QIITs as initial objects in a category of algebras;

Then derive/show that initiality corresponds exactly to ordinary elimination
rules. The key lemma used is that the category of algebras is complete.

Related/alternative work: Kaposi-Kovács [2018].

7



This work: specifying QIITs

How do we represent such definitions, in general?

How do we know that we have derived the right elimination rules?

We will take an (internal) “semantics-inspired” perspective, and specify
QIITs as initial objects in a category of algebras;

Then derive/show that initiality corresponds exactly to ordinary elimination
rules. The key lemma used is that the category of algebras is complete.

Related/alternative work: Kaposi-Kovács [2018].

7



High level view

A QIIT is given by a sequence of constructors.

cat. A of algebras
of previous constructors

specify
=⇒ new constructor

c on A
extend A with c

=⇒ new cat. of
algebras A′

At a high level, a constructor

c : (x : F(X))→ G(X, x)

is given by two Set-valued functors F , G .

Of course, we need restrictions on these functors.

8



High level view

A QIIT is given by a sequence of constructors.

complete cat. C specify
=⇒ new constructor

c on C
extend C with c

=⇒ complete cat. C′

At a high level, a constructor

c : (x : F(X))→ G(X, x)

is given by two Set-valued functors F , G .

Of course, we need restrictions on these functors.

8



High level view

A QIIT is given by a sequence of constructors.

complete cat. C specify
=⇒ new constructor

c on C
extend C with c

=⇒ complete cat. C′

At a high level, a constructor

c : (x : F(X))→ G(X, x)

is given by two Set-valued functors F , G .

Of course, we need restrictions on these functors.

8



High level view

A QIIT is given by a sequence of constructors.

complete cat. C specify
=⇒ new constructor

c on C
extend C with c

=⇒ complete cat. C′

At a high level, a constructor

c : (x : F(X))→ G(X, x)

is given by two Set-valued functors F , G .

Of course, we need restrictions on these functors.

8



Well-behaved functors

c : (x : F(X))→ G(X, x)

Argument functor F : C ⇒ Set needs to be constrained (strictly positive
etc) to prove existence, but can otherwise be arbitrary.

Target functor G :
∫ C

F

category of elements of F :
objects (X , x), where X in C and x : F(X),
morphisms (X , x)→ (X ′, x ′) consists of

f : X → X ′ with F (f )x ≡ x ′.

⇒ Set definitely cannot be arbitrary.

Intuitively, a constructor should only “construct” elements of one of the
sorts.

Mathematically, G needs to be continuous, i.e. preserve limits.

Complication:
∫ C

F is often not complete, even if C is, so we need a less
vacuous notion of continuity.

9



Well-behaved functors

c : (x : F(X))→ G(X, x)

Argument functor F : C ⇒ Set needs to be constrained (strictly positive
etc) to prove existence, but can otherwise be arbitrary.

Target functor G :
∫ C

F

category of elements of F :
objects (X , x), where X in C and x : F(X),
morphisms (X , x)→ (X ′, x ′) consists of

f : X → X ′ with F (f )x ≡ x ′.

⇒ Set definitely cannot be arbitrary.

Intuitively, a constructor should only “construct” elements of one of the
sorts.

Mathematically, G needs to be continuous, i.e. preserve limits.

Complication:
∫ C

F is often not complete, even if C is, so we need a less
vacuous notion of continuity.

9



Well-behaved functors

c : (x : F(X))→ G(X, x)

Argument functor F : C ⇒ Set needs to be constrained (strictly positive
etc) to prove existence, but can otherwise be arbitrary.

Target functor G :
∫ C

F

category of elements of F :
objects (X , x), where X in C and x : F(X),
morphisms (X , x)→ (X ′, x ′) consists of

f : X → X ′ with F (f )x ≡ x ′.

⇒ Set definitely cannot be arbitrary.

Intuitively, a constructor should only “construct” elements of one of the
sorts.

Mathematically, G needs to be continuous, i.e. preserve limits.

Complication:
∫ C

F is often not complete, even if C is, so we need a less
vacuous notion of continuity.

9



Well-behaved functors

c : (x : F(X))→ G(X, x)

Argument functor F : C ⇒ Set needs to be constrained (strictly positive
etc) to prove existence, but can otherwise be arbitrary.

Target functor G :
∫ C

F

category of elements of F :
objects (X , x), where X in C and x : F(X),
morphisms (X , x)→ (X ′, x ′) consists of

f : X → X ′ with F (f )x ≡ x ′.

⇒ Set definitely cannot be arbitrary.

Intuitively, a constructor should only “construct” elements of one of the
sorts.

Mathematically, G needs to be continuous, i.e. preserve limits.

Complication:
∫ C

F is often not complete, even if C is, so we need a less
vacuous notion of continuity.

9



Well-behaved functors

c : (x : F(X))→ G(X, x)

Argument functor F : C ⇒ Set needs to be constrained (strictly positive
etc) to prove existence, but can otherwise be arbitrary.

Target functor G :
∫ C

F

category of elements of F :
objects (X , x), where X in C and x : F(X),
morphisms (X , x)→ (X ′, x ′) consists of

f : X → X ′ with F (f )x ≡ x ′.

⇒ Set definitely cannot be arbitrary.

Intuitively, a constructor should only “construct” elements of one of the
sorts.

Mathematically, G needs to be continuous, i.e. preserve limits.

Complication:
∫ C

F is often not complete, even if C is, so we need a less
vacuous notion of continuity.

9



Relative continuity
Definition Let C be a category, C0 a complete category, and U : C ⇒ C0.

C G //

U
��

Set

C0 (complete)

• A cone in C is a U-limit cone if it is mapped to a limit cone by U.
• A functor G : C ⇒ Set is U-relatively continuous if it maps U-limit

cones to limit cones in Set.

Id-limit cones are limit cones, and Id-relative continuity is continuity.

Example Let U :
∫ C

F ⇒ C be the forgetful functor U(X , x) = X . If a
functor G :

∫ C
F ⇒ Set is U-relatively continuous, then e.g.

G (X × Y , z) = G (X , z0)× G (Y , z1)

where zi = F (πi )z .

10



Relative continuity
Definition Let C be a category, C0 a complete category, and U : C ⇒ C0.

C G //

U
��

Set

C0 (complete)

• A cone in C is a U-limit cone if it is mapped to a limit cone by U.
• A functor G : C ⇒ Set is U-relatively continuous if it maps U-limit

cones to limit cones in Set.

Id-limit cones are limit cones, and Id-relative continuity is continuity.

Example Let U :
∫ C

F ⇒ C be the forgetful functor U(X , x) = X . If a
functor G :

∫ C
F ⇒ Set is U-relatively continuous, then e.g.

G (X × Y , z) = G (X , z0)× G (Y , z1)

where zi = F (πi )z .

10



Relative continuity
Definition Let C be a category, C0 a complete category, and U : C ⇒ C0.

C G //

U
��

Set

C0 (complete)

• A cone in C is a U-limit cone if it is mapped to a limit cone by U.
• A functor G : C ⇒ Set is U-relatively continuous if it maps U-limit

cones to limit cones in Set.

Id-limit cones are limit cones, and Id-relative continuity is continuity.

Example Let U :
∫ C

F ⇒ C be the forgetful functor U(X , x) = X . If a
functor G :

∫ C
F ⇒ Set is U-relatively continuous, then e.g.

G (X × Y , z) = G (X , z0)× G (Y , z1)

where zi = F (πi )z .
10



Constructor specifications
Definition A constructor specification on a complete category C is given by

• A functor F : C ⇒ Set (the argument functor).
• A U-relatively continuous functor G :

∫ C
F ⇒ Set for the forgetful

functor U :
∫ C

F ⇒ C (the target functor).

The corresponding category of algebras C.(F ,G ) has

objects pairs (X : C, f : (x : F(X))→ G(X, x))

morphisms (X , f )→ (Y , g) consisting of α : X → Y making the
obvious “dependent diagram” commute.

Example
σeq : (Γ : Con)(A : Ty Γ)(B : Ty (ext ΓA))→ (ext (ext ΓA)B ≡Con ext Γ (σ ΓAB))

Fσeq(C ,T , ext, σ) = (ΣΓ : C )(ΣA : T (Γ))(T (ext ΓA))

Gσeq(C ,T , ext, σ, Γ,A,B) =
(
(ext (ext ΓA)B) ≡C (ext Γ (σ ΓAB))

)
.

11



Constructor specifications
Definition A constructor specification on a complete category C is given by

• A functor F : C ⇒ Set (the argument functor).
• A U-relatively continuous functor G :

∫ C
F ⇒ Set for the forgetful

functor U :
∫ C

F ⇒ C (the target functor).

The corresponding category of algebras C.(F ,G ) has

objects pairs (X : C, f : (x : F(X))→ G(X, x))

morphisms (X , f )→ (Y , g) consisting of α : X → Y making the
obvious “dependent diagram” commute.

Example
σeq : (Γ : Con)(A : Ty Γ)(B : Ty (ext ΓA))→ (ext (ext ΓA)B ≡Con ext Γ (σ ΓAB))

Fσeq(C ,T , ext, σ) = (ΣΓ : C )(ΣA : T (Γ))(T (ext ΓA))

Gσeq(C ,T , ext, σ, Γ,A,B) =
(
(ext (ext ΓA)B) ≡C (ext Γ (σ ΓAB))

)
.

11



Constructor specifications
Definition A constructor specification on a complete category C is given by

• A functor F : C ⇒ Set (the argument functor).
• A U-relatively continuous functor G :

∫ C
F ⇒ Set for the forgetful

functor U :
∫ C

F ⇒ C (the target functor).

The corresponding category of algebras C.(F ,G ) has

objects pairs (X : C, f : (x : F(X))→ G(X, x))

morphisms (X , f )→ (Y , g) consisting of α : X → Y making the
obvious “dependent diagram” commute.

Example
σeq : (Γ : Con)(A : Ty Γ)(B : Ty (ext ΓA))→ (ext (ext ΓA)B ≡Con ext Γ (σ ΓAB))

Fσeq(C ,T , ext, σ) = (ΣΓ : C )(ΣA : T (Γ))(T (ext ΓA))

Gσeq(C ,T , ext, σ, Γ,A,B) =
(
(ext (ext ΓA)B) ≡C (ext Γ (σ ΓAB))

)
.

11



Constructor specifications
Definition A constructor specification on a complete category C is given by

• A functor F : C ⇒ Set (the argument functor).
• A U-relatively continuous functor G :

∫ C
F ⇒ Set for the forgetful

functor U :
∫ C

F ⇒ C (the target functor).

The corresponding category of algebras C.(F ,G ) has

objects pairs (X : C, f : (x : F(X))→ G(X, x))

morphisms (X , f )→ (Y , g) consisting of α : X → Y making the
obvious “dependent diagram” commute.

Example
σeq : (Γ : Con)(A : Ty Γ)(B : Ty (ext ΓA))→ (ext (ext ΓA)B ≡Con ext Γ (σ ΓAB))

Fσeq(C ,T , ext, σ) = (ΣΓ : C )(ΣA : T (Γ))(T (ext ΓA))

Gσeq(C ,T , ext, σ, Γ,A,B) =
(
(ext (ext ΓA)B) ≡C (ext Γ (σ ΓAB))

)
.

11



Categories of algebras are complete

Theorem Let (F ,G ) be a constructor specification on a complete category
C. Then the category of algebras C .(F ,G ) is also complete.

For this, relative continuity of target functors is essential.

Consequences:

1 Preconditions satisfied for adding another constructor to the category
of algebras.

2 Allows using limits when reasoning about algebras, as is needed for the
elimination rules.

3 Partial progress towards existence of initial algebras (solution set
condition missing).

12



Categories of algebras are complete

Theorem Let (F ,G ) be a constructor specification on a complete category
C. Then the category of algebras C .(F ,G ) is also complete.

For this, relative continuity of target functors is essential.

Consequences:

1 Preconditions satisfied for adding another constructor to the category
of algebras.

2 Allows using limits when reasoning about algebras, as is needed for the
elimination rules.

3 Partial progress towards existence of initial algebras (solution set
condition missing).

12



Categories of algebras are complete

Theorem Let (F ,G ) be a constructor specification on a complete category
C. Then the category of algebras C .(F ,G ) is also complete.

For this, relative continuity of target functors is essential.

Consequences:

1 Preconditions satisfied for adding another constructor to the category
of algebras.

2 Allows using limits when reasoning about algebras, as is needed for the
elimination rules.

3 Partial progress towards existence of initial algebras (solution set
condition missing).

12



Categories of algebras are complete

Theorem Let (F ,G ) be a constructor specification on a complete category
C. Then the category of algebras C .(F ,G ) is also complete.

For this, relative continuity of target functors is essential.

Consequences:

1 Preconditions satisfied for adding another constructor to the category
of algebras.

2 Allows using limits when reasoning about algebras, as is needed for the
elimination rules.

3 Partial progress towards existence of initial algebras (solution set
condition missing).

12



Categories of algebras are complete

Theorem Let (F ,G ) be a constructor specification on a complete category
C. Then the category of algebras C .(F ,G ) is also complete.

For this, relative continuity of target functors is essential.

Consequences:

1 Preconditions satisfied for adding another constructor to the category
of algebras.

2 Allows using limits when reasoning about algebras, as is needed for the
elimination rules.

3 Partial progress towards existence of initial algebras (solution set
condition missing).

12



Point and path constructors

This works for any relatively continuous target functor.

In particular, for QIITs, we are interested in point and path constructors:

• Point constructors have target functors that project out a base sort.

• Path constructors have target functors that can be represented by two
natural transformations between target functors (giving LHS, RHS).

Theorem Target functors for point and path constructors are relatively
continuous.

13



Point and path constructors

This works for any relatively continuous target functor.

In particular, for QIITs, we are interested in point and path constructors:

• Point constructors have target functors that project out a base sort.

• Path constructors have target functors that can be represented by two
natural transformations between target functors (giving LHS, RHS).

Theorem Target functors for point and path constructors are relatively
continuous.

13



Point and path constructors

This works for any relatively continuous target functor.

In particular, for QIITs, we are interested in point and path constructors:

• Point constructors have target functors that project out a base sort.

• Path constructors have target functors that can be represented by two
natural transformations between target functors (giving LHS, RHS).

Theorem Target functors for point and path constructors are relatively
continuous.

13



Initiality and induction

Concise QIITs formulation: every category of algebras has an initial object.

Since the initial object is an algebra, we get the introduction rules.

Since it is initial, it is the smallest algebra, and we get the (non-dependent)
elimination rules.

For dependent elimination, we have:

Theorem

initiality ⇔ induction

14



Initiality and induction

Concise QIITs formulation: every category of algebras has an initial object.

Since the initial object is an algebra, we get the introduction rules.

Since it is initial, it is the smallest algebra, and we get the (non-dependent)
elimination rules.

For dependent elimination, we have:

Theorem

initiality ⇔ induction

14



Initiality and induction

Concise QIITs formulation: every category of algebras has an initial object.

Since the initial object is an algebra, we get the introduction rules.

Since it is initial, it is the smallest algebra, and we get the (non-dependent)
elimination rules.

For dependent elimination, we have:

Theorem

initiality ⇔ induction

14



Initiality and induction

Concise QIITs formulation: every category of algebras has an initial object.

Since the initial object is an algebra, we get the introduction rules.

Since it is initial, it is the smallest algebra, and we get the (non-dependent)
elimination rules.

For dependent elimination, we have:

Theorem

initiality ⇔ section induction ⇔ induction

14



Initiality and induction

Concise QIITs formulation: every category of algebras has an initial object.

Since the initial object is an algebra, we get the introduction rules.

Since it is initial, it is the smallest algebra, and we get the (non-dependent)
elimination rules.

For dependent elimination, we have:

Theorem

initiality ⇔ section induction ⇔

Dijkstra thesis [2017]
(syntactic)

induction

14



Initiality and induction

Concise QIITs formulation: every category of algebras has an initial object.

Since the initial object is an algebra, we get the introduction rules.

Since it is initial, it is the smallest algebra, and we get the (non-dependent)
elimination rules.

For dependent elimination, we have:

Theorem

initiality ⇔

completeness of
cat. of algebras
(semantic)

section induction ⇔

Dijkstra thesis [2017]
(syntactic)

induction

14



Initiality and induction

Concise QIITs formulation: every category of algebras has an initial object.

Since the initial object is an algebra, we get the introduction rules.

Since it is initial, it is the smallest algebra, and we get the (non-dependent)
elimination rules.

For dependent elimination, we have:

Theorem

initiality '

completeness of
cat. of algebras
(semantic)

section induction '

Dijkstra thesis [2017]
(syntactic)

induction

14



Summary
QIITs represented by sequence of constructor specifications.

Constructor specification given by argument and target functors.

Each QIIT representation gives rise to a category of algebras; we are
interested in its initial object.

An algebra is initial exactly when it satisfies the usual induction principle.

Same method should work also for higher inductive types, but we want to
make sure that all categorical concepts still make sense.

Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus
and Fredrik Nordvall Forsberg
Quotient Inductive-Inductive Types.
FoSSaCS 2018.

15



Summary
QIITs represented by sequence of constructor specifications.

Constructor specification given by argument and target functors.

Each QIIT representation gives rise to a category of algebras; we are
interested in its initial object.

An algebra is initial exactly when it satisfies the usual induction principle.

Same method should work also for higher inductive types, but we want to
make sure that all categorical concepts still make sense.

Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus
and Fredrik Nordvall Forsberg
Quotient Inductive-Inductive Types.
FoSSaCS 2018.

15

Thank you!


	Introduction
	Algebras
	Initiality vs induction
	Summary

